

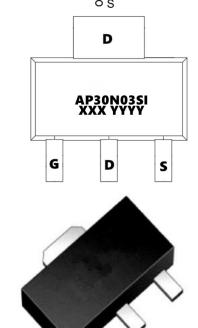
30V N-Channel Enhancement Mode MOSFET

Description

The AP30N03SI uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS}=30V I_D =30A


 $R_{DS(ON)} < 12m\Omega$ @ $V_{GS}=10V$ (Type: 8.5m Ω)

Application

Battery protection

Load switch

Uninterruptible power supply

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
AP30N03SI	SOT89-3L	AP30N03SI XXXX YYYY	3000

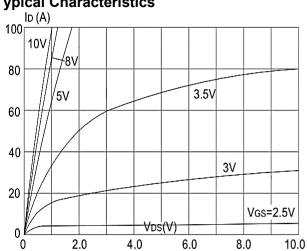
Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	30	V
VGS	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	30	A
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	18	A
IDM	Pulsed Drain Current ²	90	А
P _D @T _C =25°C	Total Power Dissipation	37.5	W
TSTG	Storage Temperature Range	-55 to 175	°C
TJ	Operating Junction Temperature Range	-55 to 175	°C
R₀JA	Thermal Resistance Junction-Ambient ¹	125	°C/W
R₀JC	Thermal Resistance Junction-Case ¹	4	°C/W

30V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	30	33		V	
∆BVDSS/∆TJ	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.0193		V/°C	
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =30A	8.5 12		12	mΩ	
, ,		V _{GS} =4.5V , I _D =15A		14	18		
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.2	1.6	2.5	V	
$\triangle V_{GS(th)}$	$V_{\text{GS(th)}}$ Temperature Coefficient	V 93 – V D3 , 1D – 200 G/C		-3.97		mV/°C	
IDSS	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	uA	
1500		V _{DS} =24V , V _{GS} =0V , T _J =55°C			5		
IGSS	Gate-Source Leakage Current	V_{GS} =±20 V , V_{DS} =0 V			±100	nA	
gfs	Forward Transconductance	V_{DS} =5 V , I_{D} =30 A	-	34		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.8		Ω	
Q_g	Total Gate Charge (4.5V)			9.8			
Q _{gs}	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =15A		4.2		nC	
Q _{gd}	Gate-Drain Charge			3.6			
Td(on)	Turn-On Delay Time			4			
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V , R_{G} =3.3		8		ns	
Td(off)	Turn-Off Delay Time	I _D =15A		31			
Tf	Fall Time			4			
Ciss	Input Capacitance			940			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		131		pF	
Crss	Reverse Transfer Capacitance			109		1	
Is	Continuous Source Current ^{1,5}	V V 0V 5			43	Α	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			112	Α	
VSD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1	V	
t _{rr}	Reverse Recovery Time	IF=30A , dI/dt=100A/μs ,		8.5		nS	
Q _{rr}	Reverse Recovery Charge	TJ=25°C	1	2.2	1	nC	


Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2、 The data tested by pulsed , pulse width $\leqq 300 us$, duty cycle $\leqq 2\%$
- 3、 The EAS data shows Max. rating . The test condition is VDD=25V,VGS=10V,L=0.1Mh,IAS=28A
- 4、The power dissipation is limited by 175°C junction temperature
- 5、The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

30V N-Channel Enhancement Mode MOSFET

ypical Characteristics

Figure1: Output Characteristics

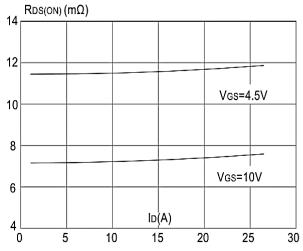
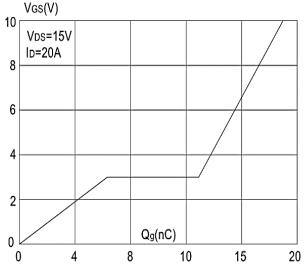



Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

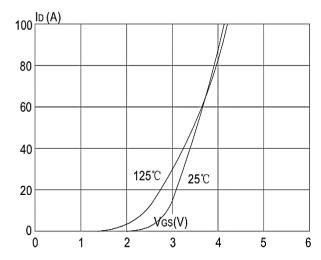


Figure 2: Typical Transfer Characteristics

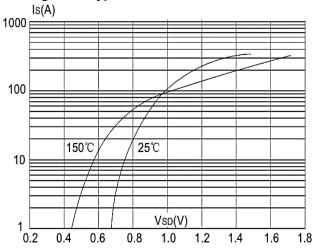


Figure 4: Body Diode Characteristics

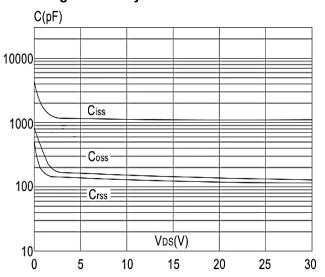


Figure 6: Capacitance Characteristics

30V N-Channel Enhancement Mode MOSFET

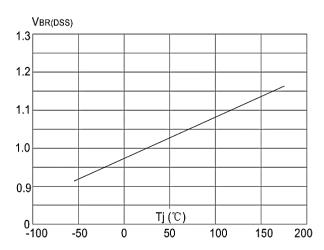


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

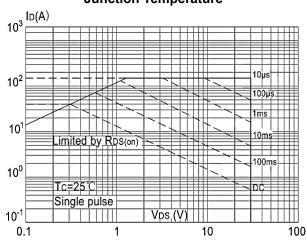


Figure 9: Maximum Safe Operating Area Temperature

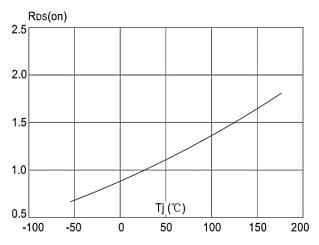


Figure 8: Normalized on Resistance vs.

Junction Temperature

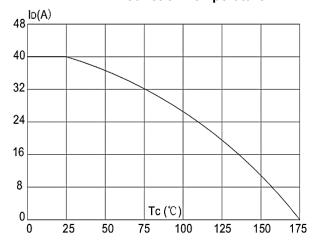


Figure 10: Maximum Continuous Drain Current vs. Ambient

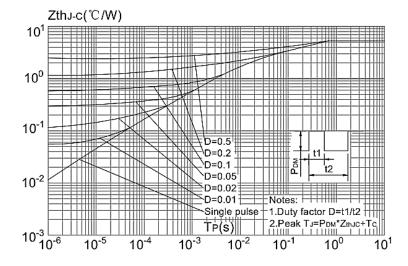
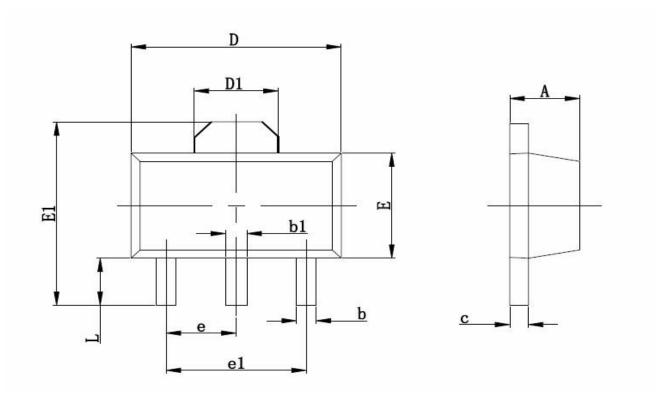



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

30V N-Channel Enhancement Mode MOSFET

Package Mechanical Data:SOT89-3L

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
	Min	Max	Min	Max
Α	1.400	1.600	0.055	0.063
b	0.350	0.520	0.013	0.197
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF		0.061 REF	
E	2.350	2.550	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP		0.06	OTYP
e1	3.000 TYP		0.118	8TYP
L	0.900	1.100	0.035	0.047