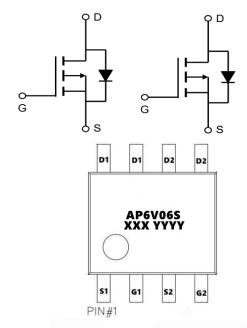
### -60V P+P-Channel Enhancement Mode MOSFET

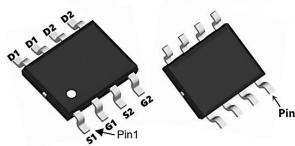
#### **Description**

The AP6V06S uses advanced trench technology to provide excellent  $R_{DS(ON)}$ , low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

#### **General Features**

 $V_{DS} = -60V I_{D} = -6A$ 


 $R_{DS(ON)} < 85m\Omega$  @  $V_{GS}=10V$  (Type:  $65m\Omega$ )


#### **Application**

Brushless motor

Load switch

Uninterruptible power supply





**Package Marking and Ordering Information** 

| Product ID | Pack   | Marking          | Qty(PCS) |  |  |
|------------|--------|------------------|----------|--|--|
| AP6V06S    | SOP-8L | AP6V06S XXX YYYY | 3000     |  |  |

Absolute Maximum Ratings (T<sub>c</sub>=25°Cunless otherwise noted)

| Symbol                                | Parameter Rating                                                   |                                                                  | Units |  |
|---------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|-------|--|
| V <sub>D</sub> s                      | Drain-Source Voltage                                               | -60                                                              | V     |  |
| V <sub>G</sub> s                      | Gate-Source Voltage                                                | Gate-Source Voltage ±20                                          |       |  |
| I <sub>D</sub> @T <sub>C</sub> =25°C  | Continuous Drain Current, V <sub>GS</sub> @ -10V <sup>1</sup>      | Continuous Drain Current, V <sub>GS</sub> @ -10V <sup>1</sup> -6 |       |  |
| I <sub>D</sub> @T <sub>C</sub> =100°C | Continuous Drain Current, V <sub>GS</sub> @ -10V <sup>1</sup> -4.3 |                                                                  | А     |  |
| Ірм                                   | Pulsed Drain Current <sup>2</sup>                                  | Pulsed Drain Current <sup>2</sup> -26                            |       |  |
| EAS                                   | Single Pulse Avalanche Energy <sup>3</sup> 29.8                    |                                                                  | mJ    |  |
| las                                   | Avalanche Current                                                  | -24.4                                                            |       |  |
| $P_D@T_C=25^{\circ}C$                 | Total Power Dissipation⁴                                           | 31.3                                                             | W     |  |
| Тѕтс                                  | Storage Temperature Range                                          | -55 to 150                                                       | °C    |  |
| TJ                                    | Operating Junction Temperature Range -55 to 150                    |                                                                  | °C    |  |
| Reja                                  | Thermal Resistance Junction-Ambient <sup>1</sup>                   | 85                                                               | °C/W  |  |
| Rejc                                  | Thermal Resistance Junction-Case <sup>1</sup>                      | 40                                                               | °C/W  |  |



### -60V P+P-Channel Enhancement Mode MOSFET

### P-Channel Electrical Characteristics (TJ =25 $^{\circ}$ C, unless otherwise noted)

| Symbol     | Parameter                                      | Conditions                                                         | Min. | Тур.  | Max. | Unit  |  |
|------------|------------------------------------------------|--------------------------------------------------------------------|------|-------|------|-------|--|
| BVDSS      | Drain-Source Breakdown Voltage                 | V <sub>GS</sub> =0V , I <sub>D</sub> =-250uA                       | -60  | -66   |      | V     |  |
| ∆BVDSS/∆TJ | BV <sub>DSS</sub> Temperature Coefficient      | Reference to 25°C , I <sub>D</sub> =-1mA                           |      | -0.03 |      | V/°C  |  |
| DDG(ON)    | Static Drain-Source On-Resistance <sup>2</sup> | V <sub>GS</sub> =-10V , I <sub>D</sub> =-3A                        |      | 65    | 85   | mΩ    |  |
| RDS(ON)    |                                                | V <sub>GS</sub> =-4.5V , I <sub>D</sub> =-2A                       |      | 80    | 100  | 11122 |  |
| VGS(th)    | Gate Threshold Voltage                         | $V_{GS}=V_{DS}$ , $I_{D}$ =-250uA                                  | -1.2 | 1.75  | -2.5 | V     |  |
| IDSS       | Drain-Source Leakage Current                   | V <sub>DS</sub> =-48V , V <sub>GS</sub> =0V , T <sub>J</sub> =25°C |      |       | 1    | uA    |  |
| וטסס       |                                                | V <sub>DS</sub> =-48V , V <sub>GS</sub> =0V , T <sub>J</sub> =55°C |      |       | 5    |       |  |
| IGSS       | Gate-Source Leakage Current                    | V <sub>GS</sub> =±20V , V <sub>DS</sub> =0V                        |      |       | ±100 | nA    |  |
| gfs        | Forward Transconductance                       | V <sub>DS</sub> =-5V , I <sub>D</sub> =-3A                         |      | 8.5   |      | S     |  |
| Qg         | Total Gate Charge (-4.5V)                      |                                                                    |      | 12.1  |      |       |  |
| Qgs        | Gate-Source Charge                             | $V_{DS}$ =-48V , $V_{GS}$ =-4.5V , $I_{D}$ =-3A                    |      | 2.2   |      | nC    |  |
| Qgd        | Gate-Drain Charge                              |                                                                    |      | 6.3   |      |       |  |
| Td(on)     | Turn-On Delay Time                             |                                                                    |      | 9.2   |      |       |  |
| Tr         | Rise Time                                      | V <sub>DD</sub> =-15V , V <sub>GS</sub> =-10V ,                    |      | 20.1  |      |       |  |
| Td(off)    | Turn-Off Delay Time                            | $R_G=3.3$ , $I_D=-1A$                                              |      | 46.7  |      | ns    |  |
| Tf         | Fall Time                                      |                                                                    |      | 9.4   |      |       |  |
| Ciss       | Input Capacitance                              |                                                                    |      | 1137  |      |       |  |
| Coss       | Output Capacitance                             | V <sub>DS</sub> =-15V , V <sub>GS</sub> =0V , f=1MHz               |      | 76    |      | pF    |  |
| Crss       | Reverse Transfer Capacitance                   |                                                                    |      | 50    |      |       |  |
| IS         | Continuous Source Current <sup>1,5</sup>       | V <sub>G</sub> =V <sub>D</sub> =0V , Force Current                 |      |       | -13  | Α     |  |
| VSD        | Diode Forward Voltage <sup>2</sup>             | V <sub>GS</sub> =0V , I <sub>S</sub> =-1A , T <sub>J</sub> =25°C   |      |       | -1.2 | ٧     |  |

#### Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width  $\, \leqq \, 300 us$  , duty cycle  $\, \leqq \, 2\%$
- 4. The data is theoretically the same as I D and I DM, in real applications, should be limited by total power dissipation.



### -60V P+P-Channel Enhancement Mode MOSFET

#### **P-Channel Typical Characteristics**

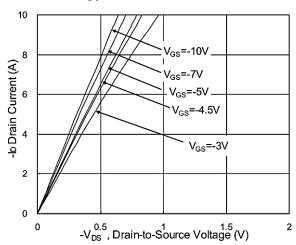



Fig.1 Typical Output Characteristics

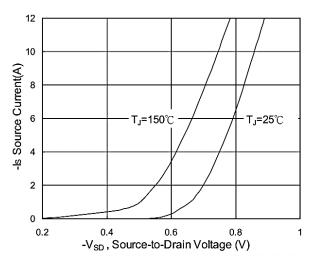



Fig.3 Forward Characteristics of Reverse

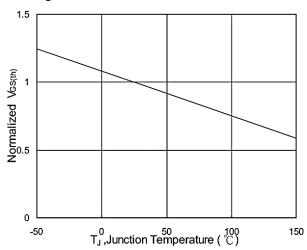



Fig.5 Normalized  $V_{GS(th)}$  v.s  $T_J$ 

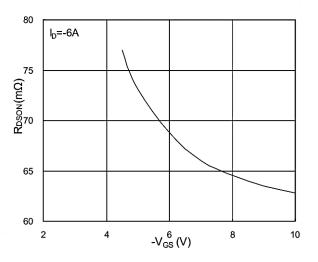



Fig.2 On-Resistance v.s Gate-Source

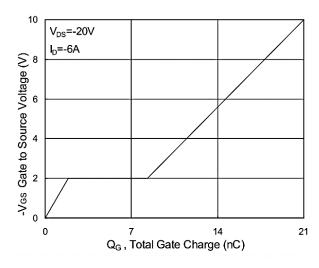



Fig.4 Gate-Charge Characteristics

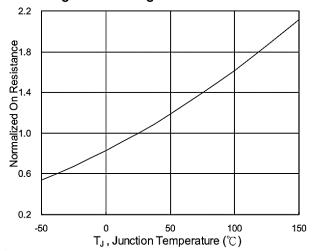
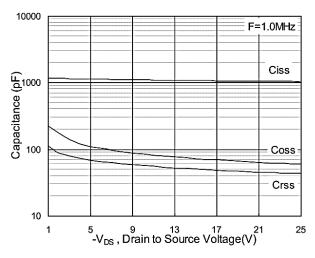




Fig.6 Normalized  $R_{DSON}$  v.s  $T_J$ 

### -60V P+P-Channel Enhancement Mode MOSFET



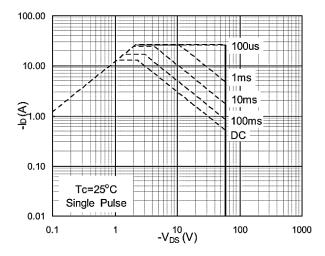
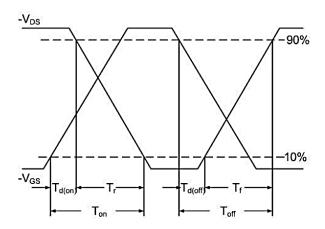
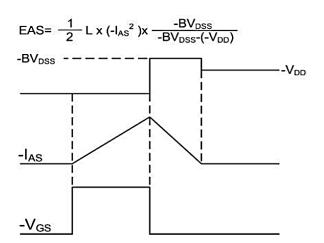
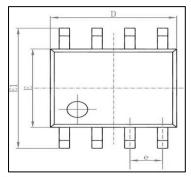



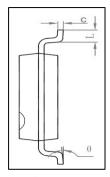

Fig.8 Safe Operating Area Fig.7 Capacitance Normalized Thermal Response (Reac) DUTY=0.5 0.1 0.05 0.02 SINGLE  $D = T_{ON}/T$  $T_J peak = T_C + P_{DM} \times R_{\theta JC}$ 0.001 0.00001 0.0001 0.001 0.01 0.1 10 t, Pulse Width (s)

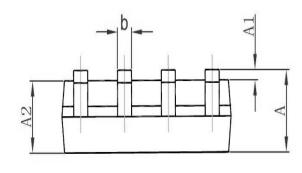
Fig.9 Normalized Maximum Transient Thermal Impedance



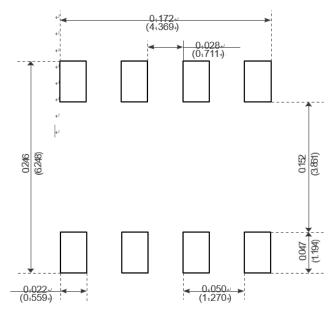




Fig.11 Unclamped Inductive Switching Waveform




### -60V P+P-Channel Enhancement Mode MOSFET


# Package Mechanical Data-SOP-8L







| Symbol | Dimensions Ir | n Millimeters | Dimensions   | In Inches |
|--------|---------------|---------------|--------------|-----------|
|        | Min           | Max           | Min          | Max       |
| Α      | 1. 350        | 1. 750        | 0. 053       | 0.069     |
| A1     | 0. 100        | 0. 250        | 0. 004       | 0. 010    |
| A2     | 1. 350        | 1. 550        | 0. 053       | 0. 061    |
| b      | 0. 330        | 0. 510        | 0. 013       | 0. 020    |
| С      | 0. 170        | 0. 250        | 0.006        | 0. 010    |
| D      | 4. 700        | 5. 100        | 0. 185       | 0. 200    |
| E      | 3. 800        | 4. 000        | 0. 150       | 0. 157    |
| E1     | 5. 800        | 6. 200        | 0. 228       | 0. 244    |
| е      | 1. 270 (BSC)  |               | 0. 050 (BSC) |           |
| L      | 0. 400        | 1. 270        | 0. 016       | 0. 050    |
| θ      | 0°            | 8°            | 0°           | 8°        |



Recommended Minimum Pads-