AP120P06P/T

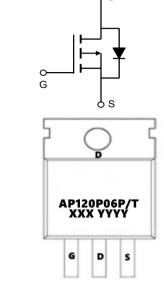
-60V P-Channel Enhancement Mode MOSFET

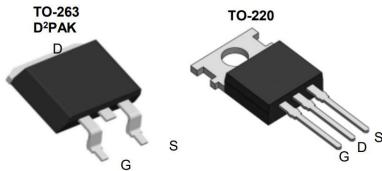
Description

The AP120P06P/T uses advanced SGT1 technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 6V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = -60V I_{D} = -120A$


 $R_{DS(ON)} < -6.5 \text{m}\Omega$ @ V_{GS} =-10V (Type: 5.5m Ω)


Application

Lithium battery protection

Wireless impact

Mobile phone fast charging

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
AP120P06P	TO-220-3L	AP120P06P XXX YYYY	1000
AP120P06T	TO-263-3L	AP120P06T XXX YYYY	800

Absolute Maximum Ratings (T_C=25°Cunless otherwise noted)

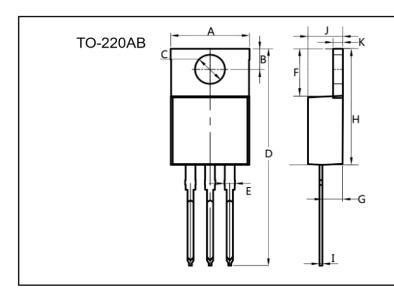
Symbol	Parameter	Rating	Units
V _D s	Drain-Source Voltage	-60	V
Vgs	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, -V _{GS} @ -10V ¹	-120	А
I _D @T _C =100°C	Continuous Drain Current, -V _{GS} @ -10V ¹	-70	Α
Ірм	Pulsed Drain Current ²	-360	А
EAS	Single Pulse Avalanche Energy ³	800	mJ
las	Avalanche Current	51	А
P _D @T _C =25°C	Total Power Dissipation ⁴	110	W
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
R _θ JA	Thermal Resistance Junction-Ambient ¹	1.1	°C/W
Rejc	Thermal Resistance Junction-Case ¹	60	°C/W

AP120P06P/T

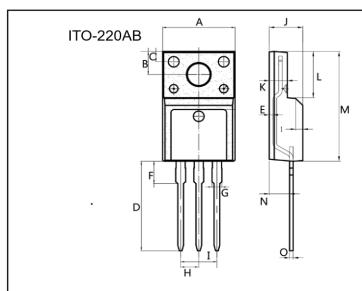
-60V P-Channel Enhancement Mode MOSFET

Electrical Characteristics (Tc=25℃unless otherwise noted)

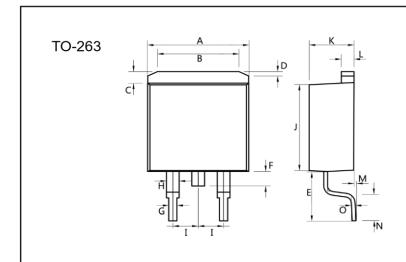
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-60	-68		V
∆BVDSS/∆TJ	BV _{DSS} Temperature Coefficient	Reference to 25℃, I _D =-1mA		-0.035		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =-10V , I _D =-20A		5.5	6.5	mΩ
ND3(ON)	Static Drain-Source On-Nesistance	V _{GS} =-4.5V , I _D =-15A		7.5	10	
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1.0	-2.0	-3.0	V
$ riangle V_{GS(th)}$	$V_{\text{GS}(\text{th})}$ Temperature Coefficient	V 93-V D3 , ID2000/ (4.28		mV/℃
IDSS	Drain-Source Leakage Current	V_{DS} =-60V , V_{GS} =0V , T_{J} =25 $^{\circ}$ C			1	1 5 uA
1000	Drain-Source Leakage Current	V _{DS} =-60V , V _{GS} =0V , T _J =55℃			5	
IGSS	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-20A		100		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		4.0		Ω
Qg	Total Gate Charge (-4.5V)			112		nC
Q_{gs}	Gate-Source Charge	V_{DS} =-30V , V_{GS} =-10V , I_{D} =-20A		22		
Q_{gd}	Gate-Drain Charge	20/1		18		
Td(on)	Turn-On Delay Time			9.0		
Tr	Rise Time	V_{DD} =-30V , V_{GS} =-10V , R_{G} =3 Ω ,		5.0		
Td(off)	Turn-Off Delay Time	I _D =-20A		29		ns
T _f	Fall Time			7.6		
Ciss	Input Capacitance			7200		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		1200		pF
Crss	Reverse Transfer Capacitance			50		
Is	Continuous Source Current ^{1,5}	V V 0V 5 0			-120	Α
ISM	Pulsed Source Current ^{2,5}	- V _G =V _D =0V , Force Current			-480	Α
VSD	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25℃			-1.2	V


Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width $\, \leqq \,$ 300us , duty cycle $\, \leqq \,$ 2%
- $3\sqrt{100}$ The EAS data shows Max. rating . The test condition is VDD =-48V,VGS =-10V,L=0.1mH,IAS =-51A
- 4. The power dissipation is limited by 150 $^\circ\!\!\mathrm{C}$ junction temperature
- 5. The data is theoretically the same as I D and I DM, in real applications, should be limited by total power dissipation.



AP120P06P/T


-60V P-Channel Enhancement Mode MOSFET

Dim.	Min.	Max.
Α	10.0	10.4
В	2.5	3.0
С	3.5	4.0
D	28.0	30.0
Е	1.1	1.5
F	6.2	6.6
G	2.9	3.3
Н	15.0	16.0
I	0.35	0.45
J	4.3	4.7
K	1.2	1.4
All Dimensions in millimeter		

Dim.	Min.	Max.	
Α	9.9	10.3	
В	2.9	3.5	
С	1.15	1.45	
D	12.75	13.25	
E	0.55	0.75	
F	3.1	3.5	
G	1.25	1.45	
Н	Typ 2.54		
I	Typ 5.08		
J	4.55	4.75	
K	2.4	2. 7	
L	6.35	6.75	
М	15.0	16.0	
N	2.75	3.15	
0	0.45	0.60	
All Dimensions in millimeter			

Dim.	Min.	Max.	
Α	10.0	10. 5	
В	7.25	7.75	
С	1.3	1.5	
D	0.55	0.75	
E	5.0	6.0	
F	1.4	1.6	
G	0.75	0.95	
Н	1.15	1.35	
	Typ 2.54		
J	8.4	8.6	
K	4.4	4.6	
L	1.25	1.45	
М	0.02	0.1	
N	2.4	2.8	
0	0.35	0.45	
All Dimensions in millimeter			