

AP15H04S

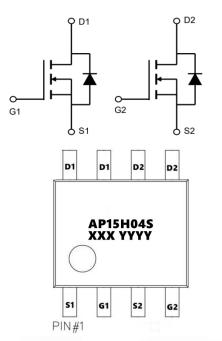
40V N+N-Channel Enhancement Mode MOSFET

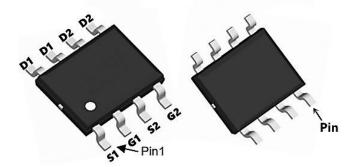
Description

The AP15H04S uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 40V I_D =15A


 $R_{DS(ON)} < 10m\Omega @ V_{GS}=10V$ (Type: 8.5m Ω)


Application

Battery protection

Load switch

Uninterruptible power supply

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
AP15H04S	SOP-8L	AP15H04S XXX YYYY	3000

Absolute Maximum Ratings (Tc=25°Cunless otherwise noted)

Symbol	Parameter	Rating	Units
Vds	Drain-Source Voltage	40	V
Vgs	Gate-Source Voltage	Gate-Source Voltage ±20	
I₀@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	Continuous Drain Current, V _{GS} @ 10V ¹ 15	
I ⊳@Tc=100 ℃	Continuous Drain Current, V _{GS} @ 10V ¹	10	А
Ідм	Pulsed Drain Current ² 45		А
EAS	Single Pulse Avalanche Energy ³ 181		mJ
las	Avalanche Current	he Current 16	
P₀@Tc=25℃	Total Power Dissipation ⁴	33.7	W
Tstg	Storage Temperature Range	-55 to 150	
TJ	Operating Junction Temperature Range -55 to 150		°C
R _θ JA	Thermal Resistance Junction-Ambient ¹	85	°C /W
R _θ JC	Thermal Resistance Junction-Case ¹	2.1 °C/W	

40V N+N-Channel Enhancement Mode MOSFET

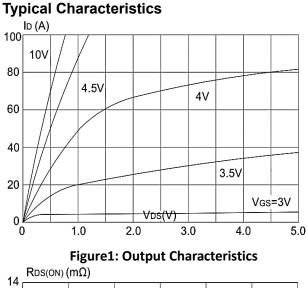
Electrical Characteristics (TJ=25°C, unless otherwise noted)

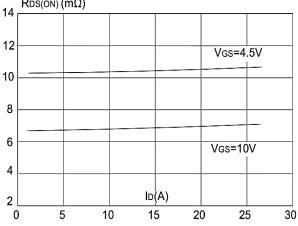
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	40			V
∆BVDSS/∆TJ	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.028		V/°C
RDS(ON)	Static Drain-Source On-Resistance	V_{GS} =10V , I _D =30A		8.5	10	mΩ
		V _{GS} =4.5V , I _D =15A		10	16	
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.2	1.6	2.5	V
$\bigtriangleup V_{\text{GS(th)}}$	$V_{GS(th)}$ Temperature Coefficient			-6.16		mV/°C
IDSS	Drain-Source Leakage Current	V _{DS} =40V , V _{GS} =0V , T _J =25°C			1	uA
1033		V _{DS} =40V , V _{GS} =0V , T _J =55°C			5	uA
IGSS	Gate-Source Leakage Current	V_{GS} =±20V , V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =30A		22		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7	3.4	Ω
Qg	Total Gate Charge (4.5V)			37		
Qgs	Gate-Source Charge	V _{DS} =20V , V _{GS} =10V , I _D =25A		6		nC
Q _{gd}	Gate-Drain Charge			7		
Td(on)	Turn-On Delay Time			12		ns
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V , R _G =1Ω		12		
Td(off)	Turn-Off Delay Time	I _D =25A		38		
T _f	Fall Time			9		
Ciss	Input Capacitance			2400		
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		192		pF
Crss	Reverse Transfer Capacitance			165		
ls	Continuous Source Current ^{1,5}				50	Α
ISM	Pulsed Source Current ^{2,5}	$V_G=V_D=0V$, Force Current			200	А
VSD	Diode Forward Voltage ²	V _{GS} =0V , Is=1A , Tյ=25℃			1.2	V
t _{rr}	Reverse Recovery Time	IF=30A ,		22		nS
Qrr	Reverse Recovery Charge	dl/dt=100A/µs ,Tյ=25℃		11		nC

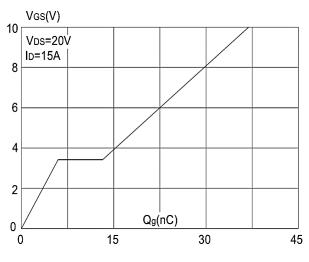
Note :

1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.

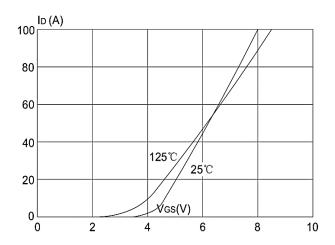
2、The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%

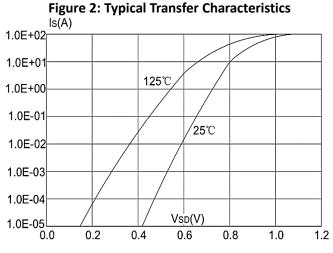

 $3\,{\scriptstyle \sim}\,$ The power dissipation is limited by $150\,{\rm ^{\circ}C}$ junction temperature

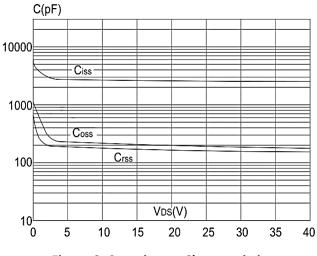

4. The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation



40V N+N-Channel Enhancement Mode MOSFET







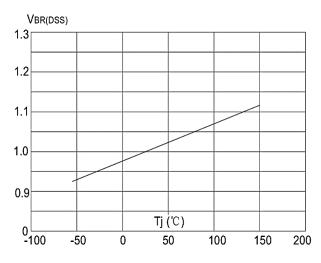


Figure 6: Capacitance Characteristics

40V N+N-Channel Enhancement Mode MOSFET

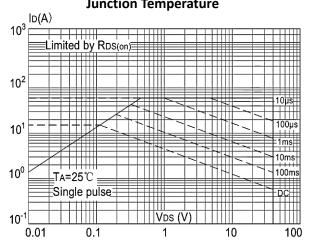


Figure 9: Maximum Safe Operating Area vs. Case Temperature

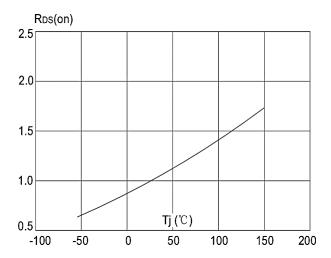


Figure 8: Normalized on Resistance vs Junction Temperature

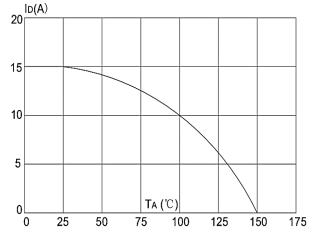
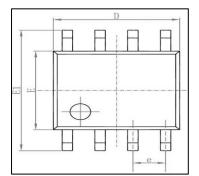
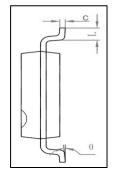
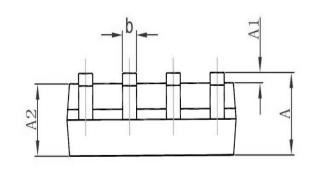


Figure 10: Maximum Continuous Drain Current

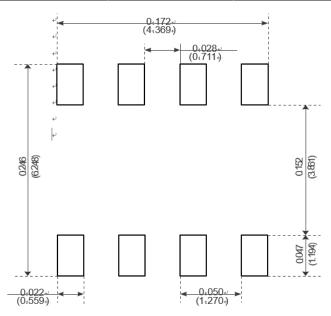



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case





40V N+N-Channel Enhancement Mode MOSFET


Package Mechanical Data-SOP-8

Symbol	Dimensions Ir	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
А	1.350	1.750	0. 053	0.069
A1	0.100	0. 250	0.004	0.010
A2	1.350	1.550	0. 053	0.061
b	0. 330	0. 510	0.013	0.020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0.200
E	3.800	4.000	0. 150	0. 157
E1	5.800	6.200	0. 228	0. 244
е	1. 270 (BSC)		0.050	(BSC)
L	0.400	1.270	0.016	0.050
θ	0°	8°	0 °	8°

Recommended Minimum Pads.