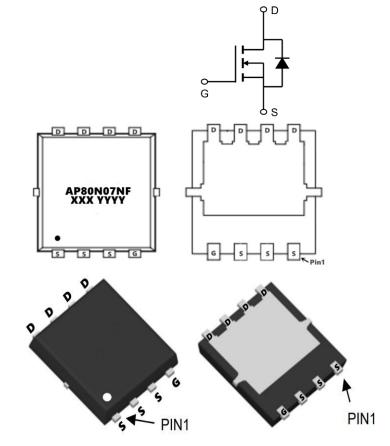
68V N-Channel Enhancement Mode MOSFET

Description

The AP80N07NF uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with Hight EAS. This device is suitable for use as a Battery protectionor in other Switching application.

General Features

V_{DS} = 68V I_D =80A


 $R_{DS(ON)} < 9.0 \text{m}\Omega$ @ $V_{GS}=10V$ (Type: 7.2 m Ω)

Application

Battery protection

Load switch

Uninterruptible power supply

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
AP80N07NF	PDFN5X6-8L	AP80N07NF XXX YYYY	5000

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	68	V
VGS	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	80	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	52	А
IDM	Pulsed Drain Current ²	320	Α
EAS	Single Pulse Avalanche Energy ³	110	mJ
IAS	Avalanche Current	22	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	103	W
TSTG	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
ReJA	Thermal Resistance Junction-ambient ¹	63	°C/W
R₀JC	Thermal Resistance Junction-Case ¹	1.46	°C/W

68V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	68	72		V
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃ , I _D =1mA		0.023		V/℃
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =10A		7.5	9.0	mΩ
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2.0	3.0	4.0	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID -2000A		-4.2		mV/℃
IDSS	Drain-Source Leakage Current	V _{DS} =68V , V _{GS} =0V , T _J =25°C			1	uA
1500	Brain-oodice Leakage Ourient	V _{DS} =68V , V _{GS} =0V , T _J =55℃			5	uд
IGSS	Gate-Source Leakage Current	V_{GS} =±20 V , V_{DS} =0 V			±100	nA
Q_g	Total Gate Charge (4.5V)			35		
Qgs	Gate-Source Charge	VDS =30V, ID =30A, VGS =10V		11		nC
Qgd	Gate-Drain Charge	9	9			
Td(on)	Turn-On Delay Time			15		
Tr	Rise Time	VDS =30V,ID =30A,		90		
Td(off)	Turn-Off Delay Time	RGEN =3Ω, V GS =10V		45		ns
T _f	Fall Time			30		
Ciss	Input Capacitance			400		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		267		pF
Crss	Reverse Transfer Capacitance			250		
IS	Continuous Source Current ^{1,5}	V V 0V 5			80	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			320	Α
VSD	Diode Forward Voltage ²	V GS =0V, I S =80A			1.2	V
trr	Reverse Recovery Time	T J =25℃		78		nS
Qrr	Reverse Recovery Charge	I F =20A,dI/dt=100A/μs		51		nC

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- $2\sqrt{100}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3、The test cond \leq 300us duty cycle \leq 2%, duty cycle ition is TJ =25°C, VDD =35V, VG =10V, R G =25 Ω , L=0.5mH, IAS =21A
- 4. The power dissipation is limited by 175 $\!\!\!^{\,\circ}\!\!\!^{\,\circ}$ junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

68V N-Channel Enhancement Mode MOSFET

ID (A)

Typical Characteristics

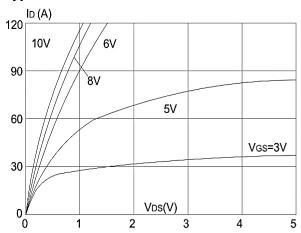
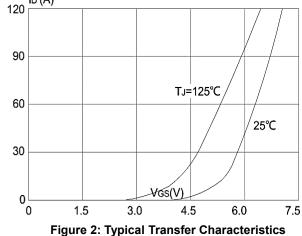



Figure1: Output Characteristics

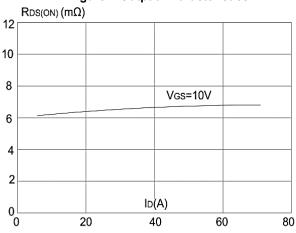


Figure 3:On-resistance vs. Drain Current

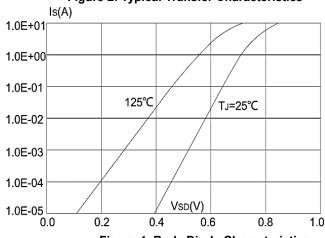


Figure 4: Body Diode Characteristics

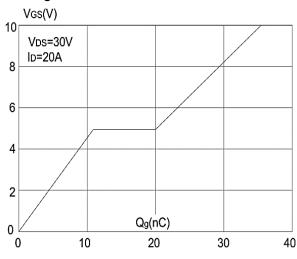


Figure 5: Gate Charge Characteristics

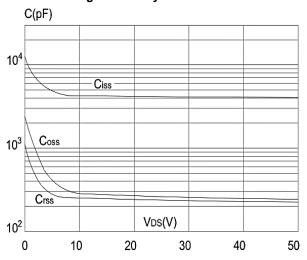


Figure 6: Capacitance Characteristics

68V N-Channel Enhancement Mode MOSFET

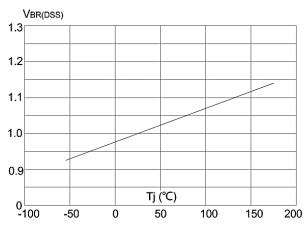


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

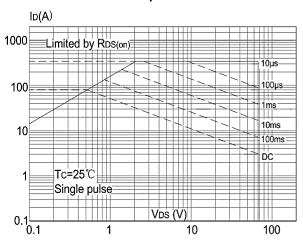


Figure 9: Maximum Safe Operating Area

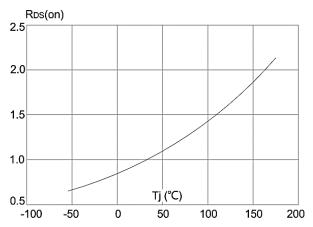


Figure 8: Normalized on Resistance vs.

Junction Temperature

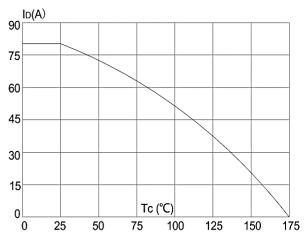


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

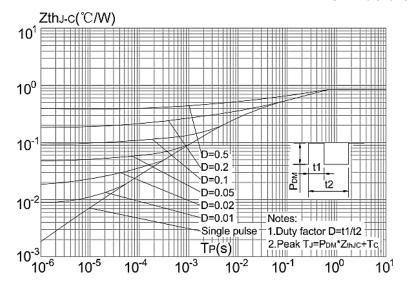
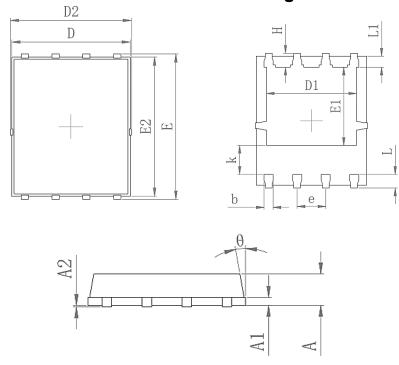



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

68V N-Channel Enhancement Mode MOSFET

Package Mechanical Data-PDFN5X6-8L-XZT Single

	Com	mon	
Symbol	mm		
	Mim	Max	
Α	0.90	1.10	
A1	0.254	REF	
A2	0-0	.05	
D	4.824	4.976	
D1	3.910	4.110	
D2	4.944	5.076	
E	5.924	6.076	
E1	3.375	3.575	
E2	5.674	5.826	
b	0.350	0.450	
е	1.2	70	
L	0.534	0.686	
L1	0.424	0.576	
K	1.190	1.390	
Н	0.549	0.701	
Ф	8°	12°	