60V N-Channel Enhancement Mode MOSFET

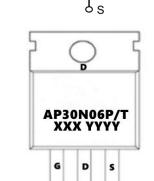
Q D

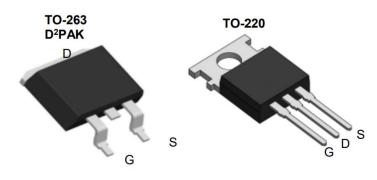
Description

The AP30N06DF uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 60V I_D =30A


 $R_{DS(ON)}$ <36m Ω @ V_{GS} =10V (Type: 28m Ω)


Application

LED lamp

Load switch

Uninterruptible power supply

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
AP30N06P	TO-220-3L	AP30N06P XXX YYYY	1000
AP30N06T	TO-263-3L	AP30N06T XXX YYYY	800

Symbol	Parameter	Max.	Units
VDSS	Drain-Source Voltage	60	V
VGSS	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	30	А
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	16	A
IDM	Pulsed Drain Current	74	А
IAS	Avalanche Current	13	A
EAS	Single Pulsed Avalanche Energy	22	mJ
P _D @T _C =25°C	Power Dissipation	31.3	W
TJ, TSTG	Operating and Storage Temperature Range	-55 to +175	°C
ReJA	Thermal Resistance Junction-Ambient ¹	62.5	°C/W
R₀JC	Thermal Resistance Junction-Case ¹	4	°C/W

60V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60	65		V
∆BVDSS/∆TJ	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.044		V/°C
		V _{GS} =10V , I _D =15A		28	36	mΩ
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =7A		38	45	mΩ
VGS(th)	Gate Threshold Voltage		1.2	1.6	2.5	V
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-4.8		mV/°C
IDSS	Drain Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1	
1033	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =55°C			5	uA
IGSS	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =15A		25.3		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.5		Ω
Qg	Total Gate Charge (10V)			19		
Q _{gs}	Gate-Source Charge	V _{DS} =48V , V _{GS} =10V , I _D =15A	1	2.5		nC
Q_{gd}	Gate-Drain Charge			5		
Td(on)	Turn-On Delay Time			2.8		
Tr	Rise Time	V_{DD} =30V , V_{GS} =10V , R_{G} =3.3 Ω		16.6		ne
Td(off)	Turn-Off Delay Time	I _D =15A	-	21.2		ns
T _f	Fall Time			5.6		
C _{iss}	Input Capacitance		I	1027		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz	I	65		pF
Crss	Reverse Transfer Capacitance		I	46		
Is	Continuous Source Current ^{1,6}	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			20	Α
ISM	Pulsed Source Current ^{2,6}	V _G =V _D =0V , Force Current	-		40	Α
VSD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C	-		1.2	V
t _{rr}	Reverse Recovery Time	IF=15A , dI/dt=100A/μs ,		12.2		nS
Q _{rr}	Reverse Recovery Charge	TJ=25°C		7.3		nC

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- $\ensuremath{\mathsf{2}}_{\ensuremath{\mathsf{N}}}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3. The test cond \leq 300us duty cycle \leq 2%, duty cycle ition is TJ =25°C, VDD =48V, VG =10V, RG =25 Ω , L=0.1mH, IAS =13A
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

60V N-Channel Enhancement Mode MOSFET

Typical Characteristics

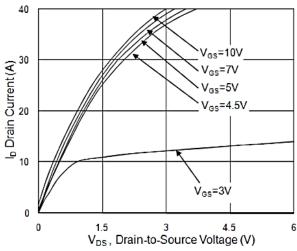


Fig.1 Typical Output Characteristics

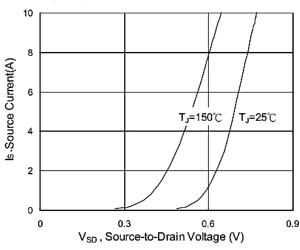


Fig.3 Forward Characteristics Of Reverse

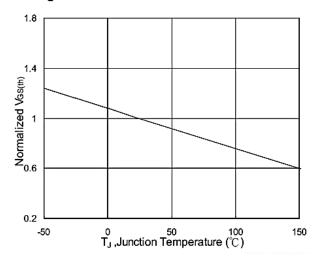


Fig.5 Normalized $V_{GS(th)}$ vs. T_J

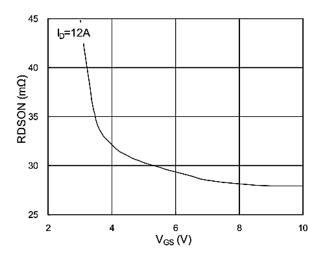


Fig.2 On-Resistance vs. Gate-Source

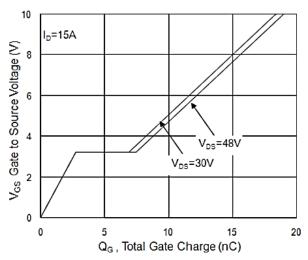


Fig.4 Gate-Charge Characteristics

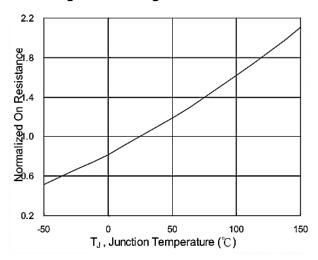
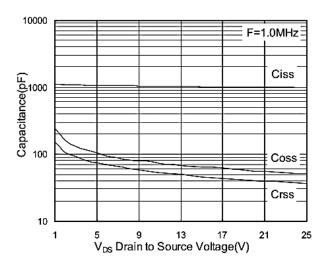



Fig.6 Normalized R_{DSON} vs. T_J

60V N-Channel Enhancement Mode MOSFET

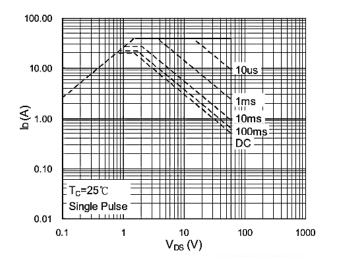


Fig.7 Capacitance

Fig.8 Safe Operating Area

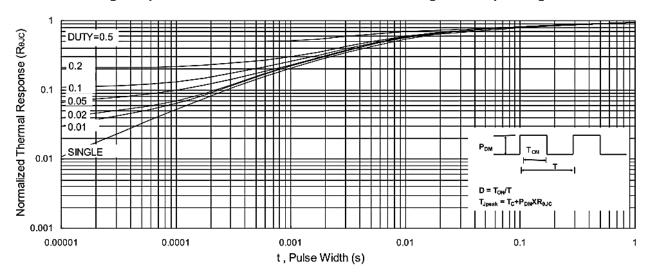
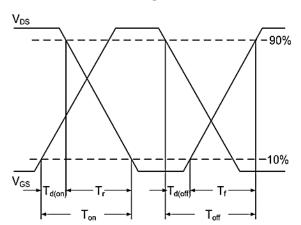
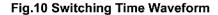




Fig.9 Normalized Maximum Transient Thermal Impedance

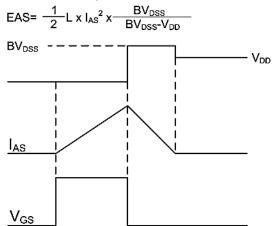
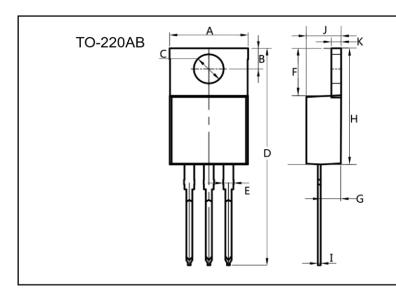
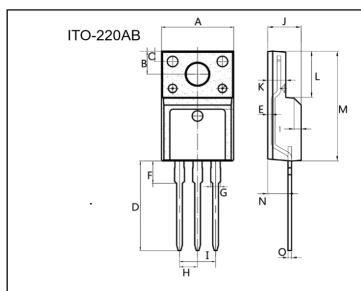
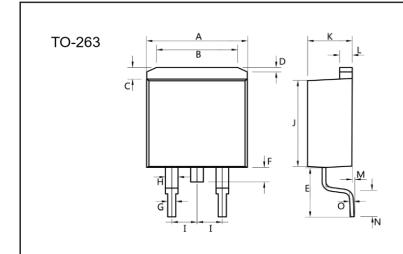




Fig.11 Unclamped Inductive Switching Waveform


60V N-Channel Enhancement Mode MOSFET

Dim.	Min.	Max.	
Α	10.0	10.4	
В	2.5	3.0	
С	3.5	4.0	
D	28.0	30.0	
E	1.1	1.5	
F	6.2	6.6	
G	2.9	3.3	
Н	15.0	16.0	
I	0.35	0.45	
J	4.3	4.7	
K	1.2	1.4	
All Dimensions in millimeter			

Dim.	Min. Max.		
Α	9.9	10.3	
В	2.9	3.5	
С	1.15	1.45	
D	12.75	13.25	
E	0.55	0.75	
F	3.1	3.5	
G	1.25	1.45	
Н	Typ 2.54		
I	Typ 5.08		
J	4.55	4.75	
K	2.4	2. 7	
L	6.35	6.75	
M	15.0	16.0	
N	2.75	3.15	
0	0.45	0.60	
All Dimensions in millimeter			

Dim.	Min.	Max.	
Α	10.0	10. 5	
В	7.25	7.75	
С	1.3	1.5	
D	0.55	0.75	
E	5.0	6.0	
F	1.4	1.6	
G	0.75	0.95	
Н	1.15	1.35	
I	Typ 2.54		
J	8.4	8.6	
K	4.4	4.6	
L	1.25	1.45	
M	0.02	0.1	
N	2.4	2.8	
0	0.35	0.45	
All Dimensions in millimeter			