

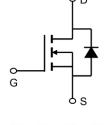
60V N-Channel Enhancement Mode MOSFET

Description

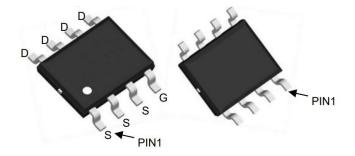
The AP20N06S uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 10V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 60V I_D =20A


 $R_{DS(ON)} < 10 m\Omega$ @ $V_{GS}=10 V$ (Type: $7.8 m\Omega$)

Application


Battery protection

Load switch

synchronous rectification

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
AP20N06S	SOP-8L	AP20N06S XXX YYYY	3000

Absolute Maximum Ratings (T_c=25°C unless otherwise noted)

Symbol	Parameter Rating		Units
VDS	Drain-Source Voltage 60		V
VGS	Gate-Source Voltage ±20		V
I _D @T _C =25℃	Continuous Drain Current, V _{GS} @ 10V ¹ 20		А
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹ 13		А
IDM	Pulsed Drain Current ² 80		А
EAS	Single Pulse Avalanche Energy ³ 140		mJ
P _D @T _C =25°C	Total Power Dissipation ⁴	116	W
TSTG	Storage Temperature Range -55 to 150		°C
TJ	Operating Junction Temperature Range -55 to 150		°C
R₀JA	Thermal Resistance Junction-ambient ¹ 46		°C/W
R₀JC	Thermal Resistance Junction-Case ¹	0.85	°C/W

60V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	68	72		V	
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.023		V/°C	
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =10A		7.8	10	mΩ	
VGS(th)	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2.0	3.0	4.0	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID -2300A		-4.2		mV/℃	
IDSS	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	uA	
1500		V_{DS} =24V , V_{GS} =0V , T_{J} =55 $^{\circ}$ C			5	uA	
IGSS	Gate-Source Leakage Current	V_{GS} =±20 V , V_{DS} =0 V			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =10A		5.5		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.3		Ω	
Qg	Total Gate Charge (4.5V)			35		nC	
Qgs	Gate-Source Charge	VDS =30V, ID =20A, VGS =10V		11			
Qgd	Gate-Drain Charge	100 .01		9			
Td(on)	Turn-On Delay Time			15		ns	
Tr	Rise Time	V DS =30V,I D =20A,		94			
Td(off)	Turn-Off Delay Time	RGEN =6Ω, V GS =10V		46			
T _f	Fall Time			32			
Ciss	Input Capacitance			4062			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		261		pF	
Crss	Reverse Transfer Capacitance			231		1	
IS	Continuous Source Current ^{1,5}	V V 0V F 0			80	Α	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			320	Α	
VSD	Diode Forward Voltage ²	V GS =0V, I S =80A			1.2	V	
trr	Reverse Recovery Time	T J =25℃		78		nS	
Qrr	Reverse Recovery Charge	I F =20A,dI/dt=100A/μs		51		nC	

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3. The power dissipation is limited by 175 $^{\circ}\mathrm{C}$ junction temperature
- 4. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

60V N-Channel Enhancement Mode MOSFET

Typical Characteristics

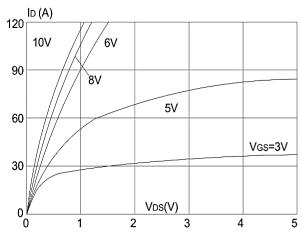


Figure1: Output Characteristics

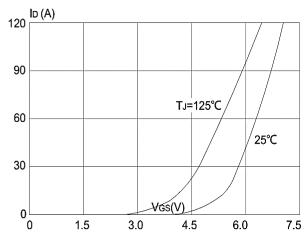


Figure 2: Typical Transfer Characteristics

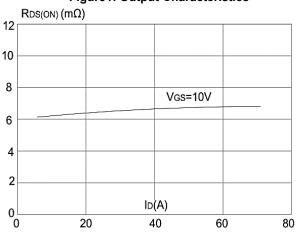
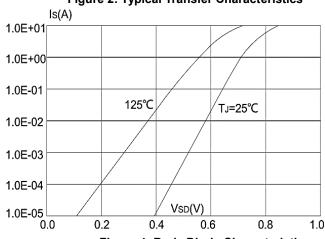



Figure 3:On-resistance vs. Drain Current

Figure 4: Body Diode Characteristics

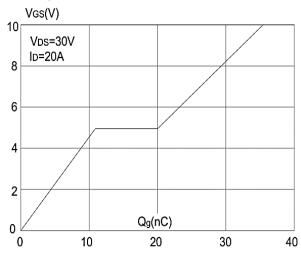
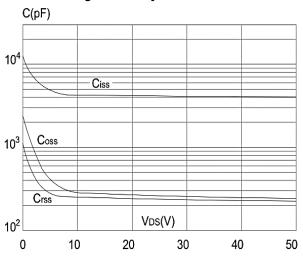



Figure 5: Gate Charge Characteristics

Figure 6: Capacitance Characteristics

60V N-Channel Enhancement Mode MOSFET

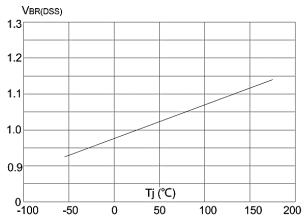


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

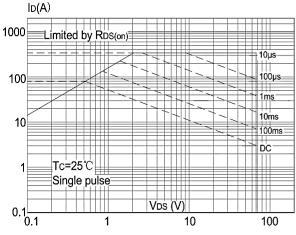


Figure 9: Maximum Safe Operating Area

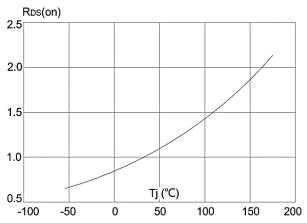


Figure 8: Normalized on Resistance vs.

Junction Temperature

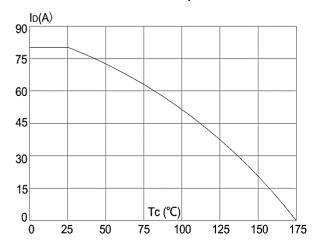
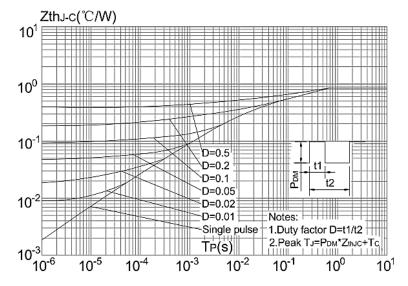
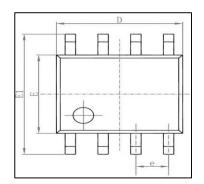
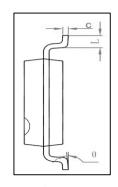
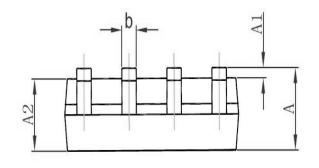
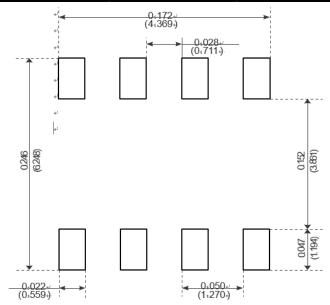


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature


Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

60V N-Channel Enhancement Mode MOSFET


Package Mechanical Data-SOP-8L

Symbol	Dimensions In	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0. 061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0. 006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0. 050 (BSC)	
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°

Recommended Minimum Pads-