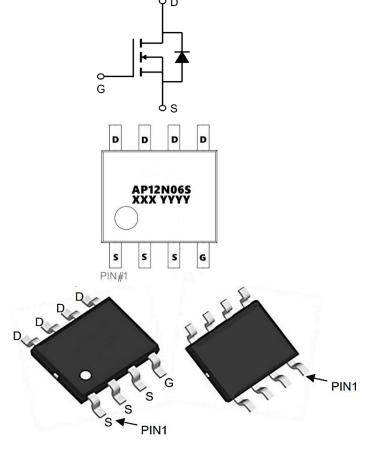
60V N-Channel Enhancement Mode MOSFET

Description

The AP12N06S uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 60V I_{D} = 12A$


 $R_{DS(ON)} < 32m\Omega$ @ $V_{GS}=10V$ (Type: 24m Ω)

Application

Battery protection

Load switch

Uninterruptible power supply

Package Marking and Ordering Information

a dokago marking and Ordonnig information				
Product ID	Pack	Marking	Qty(PCS)	
AP12N06S	SOP-8L	AP12N06S XXX YYYY	3000	

Absolute Maximum Ratings (T_C=25°Cunless otherwise noted)

Symbol	Parameter	Rating	Units	
V _D S	Drain-Source Voltage	60	V	
V _G s	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	12	A	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	inuous Drain Current, V _{GS} @ 10V ¹ 11		
Ідм	Pulsed Drain Current ²	Pulsed Drain Current ² 36		
EAS	Single Pulse Avalanche Energy ³	25.5	mJ	
P _D @T _C =25°C	Total Power Dissipation ⁴	34.7	W	
Тѕтс	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	
$R_{\theta JA}$	Thermal Resistance Junction-Ambient ¹	85	°C/W	
Rejc	Thermal Resistance Junction-Case ¹	28 °C/W		

60V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60	65		V	
∆BVDSS/∆TJ	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA		0.063		V/°C	
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =15A		24	32	mΩ	
		V _{GS} =4.5V , I _D =10A		33	42		
VGS(th)	Gate Threshold Voltage	\/ -\/ -250\	1.2	1.6	2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-5.24		mV/°C	
IDCC	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1	uA	
IDSS		V _{DS} =48V , V _{GS} =0V , T _J =55°C			5		
IGSS	Gate-Source Leakage Current	V_{GS} =±20 V , V_{DS} =0 V			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =15A		17		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		3.2		Ω	
Q_g	Total Gate Charge (4.5V)			12.6			
Qgs	Gate-Source Charge	V _{DS} =48V , V _{GS} =4.5V , I _D =12A		3.2		nC	
Q_{gd}	Gate-Drain Charge			6.3	I		
Td(on)	Turn-On Delay Time			8			
Tr	Rise Time	V_{DD} =30V , V_{GS} =10V , R_{G} =3.3 Ω ,		14.2	-] ,,,	
Td(off)	Turn-Off Delay Time	I _D =10A		24.4		ns -	
T _f	Fall Time			4.6			
C _{iss}	Input Capacitance			1378			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		86		pF	
Crss	Reverse Transfer Capacitance			64			
Is	Continuous Source Current ^{1,5}	\/-=\/-=0\/ Force Cument			23	Α	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			46	Α	
VSD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V	

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2 、The data tested by pulsed , pulse width $\leqq 300 us$, duty cycle $\leqq 2\%$
- 3. The power dissipation is limited by 150°C junction temperature
- 4、 The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

60V N-Channel Enhancement Mode MOSFET

Typical Characteristics

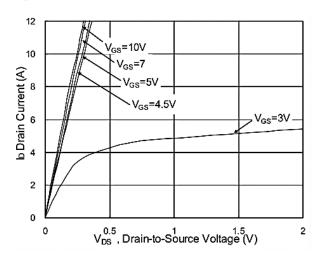


Fig.1 Typical Output Characteristics

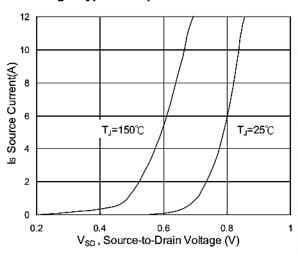


Fig.3 Forward Characteristics of Reverse

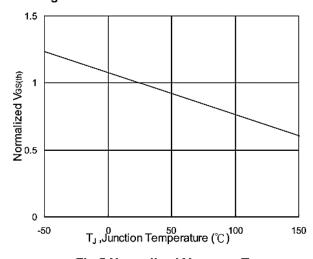


Fig.5 Normalized $V_{GS(th)}$ v.s T_J

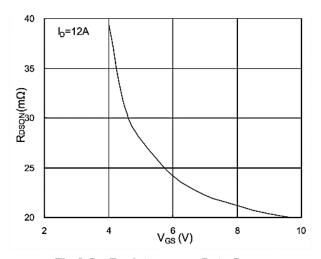


Fig.2 On-Resistance v.s Gate-Source

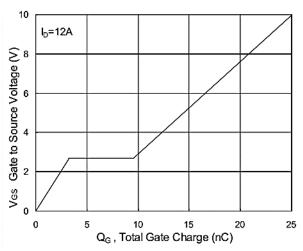


Fig.4 Gate-Charge Characteristics

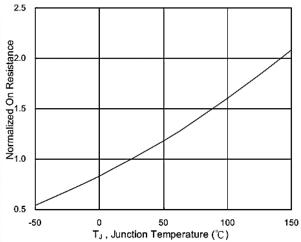
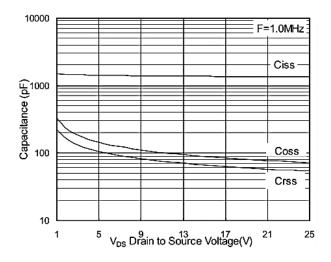



Fig.6 Normalized R_{DSON} v.s T_J

60V N-Channel Enhancement Mode MOSFET

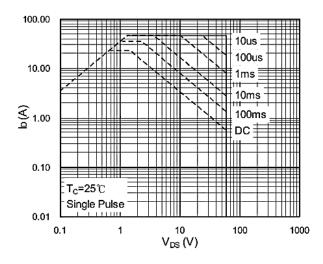


Fig.7 Capacitance

Fig.8 Safe Operating Area

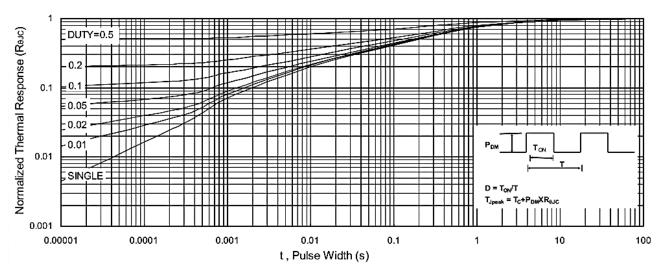


Fig.9 Normalized Maximum Transient Thermal Impedance

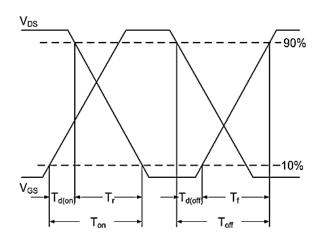
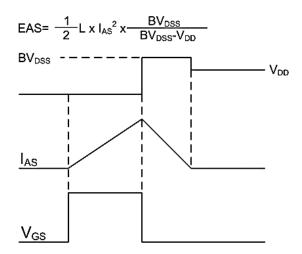
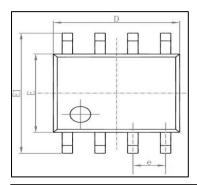
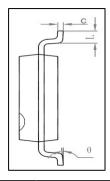
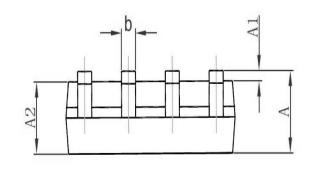


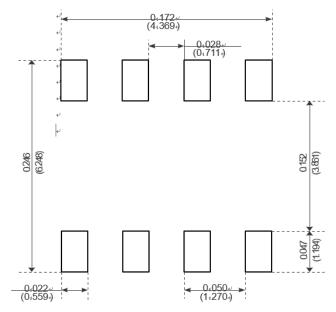
Fig.10 Switching Time Waveform


Fig.11 Unclamped Inductive Waveform



60V N-Channel Enhancement Mode MOSFET


Package Mechanical Data-SOP-8

Ch - 1	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0. 061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0. 050 (BSC)	
L	0. 400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads-