<u>AP150N04Y</u>

40V N-Channel Enhancement Mode MOSFET

G

9 D

D

AP150N04Y XXX YYYY

D

S

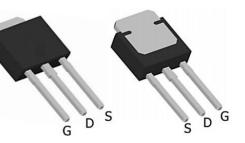
Description

The AP150N04Y uses advanced **SGT V** technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

CRO

General Features

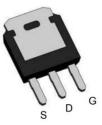
V_{DS} = 40V I_D =150 A


 $R_{DS(ON)} < 2.5m\Omega @ V_{GS}=10V (Type: 1.9m\Omega)$

Application

Battery protection

Load switch


Uninterruptible power supply

电话:0769-89027776/81885205/81885153

G

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
AP150N04Y	TO-251L-3L	AP150N04Y XXXX YYYY	4000
AP150N04Y	TO-251S-3L	AP150N04Y XXXX YYYY	4000

Absolute Maximum Ratings (TC=25°C unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	40	V	
VGS	Gate-Source Voltage	±20	V	
I⊳@Tc=25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	150	А	
I⊳@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	90	А	
IDM	DM Pulsed Drain Current ² 450		А	
EAS	Single Pulse Avalanche Energy ³	400	mJ	
IAS	Avalanche Current	40	А	
P₀@T₀=25℃	Total Power Dissipation ⁴	125	W	
TSTG	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	
R₀JA	Thermal Resistance Junction-Ambient ¹	50	°C/W	
R₀JC	Thermal Resistance Junction-Case ¹	1	°C/W	

AP150N04Y

40V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (TJ=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage V_{GS} =0V , I _D =250uA		40	47		V
RDS(ON)	Static Drain-Source On-Resistance ²	Static Drain-Source On-Resistance ² V _{GS} =10V , I _D =20A		1.9	2.5	mΩ
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =20A		3.3	5.0	mΩ
VGS(th)	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250uA	1.2	1.6	2.2	V
IDSS	Drain-Source Leakage Current	$V_{\text{DS}}\text{=}32V$, $V_{\text{GS}}\text{=}0V$, $T_{\text{J}}\text{=}25^\circ\!\!\mathrm{C}$			1	uA
1033		$V_{\text{DS}}\text{=}32V$, $V_{\text{GS}}\text{=}0V$, $T_{\text{J}}\text{=}55^\circ\!\!\mathbb{C}$			5	
IGSS	Gate-Source Leakage Current	V_{GS} =±20V , V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =20A		53		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.0		Ω
Qg	Total Gate Charge (4.5V)			45		
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =10V , I _D =20A		12		nC
Qgd	Gate-Drain Charge			18.5		
Td(on)	Turn-On Delay Time			18.5		
Tr	Rise Time	V _{DD} =15V , V _{GS} =10V , R _G =3.3Ω,		9		
Td(off)	Turn-Off Delay Time			58.5		ns
T _f	Fall Time	- I _D =20A		32		
Ciss	Input Capacitance			3972		
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		1119		pF
Crss	Reverse Transfer Capacitance			82		
IS	Continuous Source Current ^{1,6}	$V_G=V_D=0V$, Force Current			100	А
VSD	Diode Forward Voltage ²	V _{GS} =0V , Is=1A , TJ=25℃			1.2	V

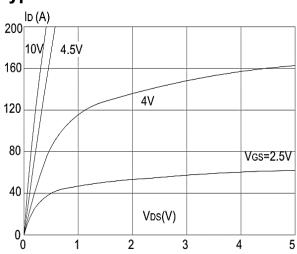
Note :

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2. The data tested by pulsed , pulse width $~\leq~$ 300us , duty cycle $~\leq~$ 2%

3、The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.5mH,I_{AS}=40A

 $4\,{\scriptstyle \smallsetminus}\,$ The power dissipation is limited by $150\,{\rm ^\circ C}\,$ junction temperature


 5_{\circ} The data is theoretically the same as I_D and I_{DM}, in real applications, should be limited by total power dissipation

40V N-Channel Enhancement Mode MOSFET

Typical Characteristics

DONGGUAN

YUSHIN FLEC

电话:0769-89027776/81885205/81885153

Figure1: Output Characteristics

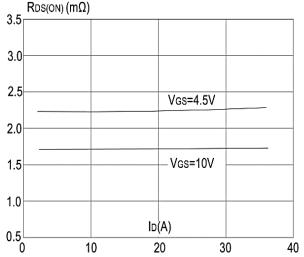


Figure 3:On-resistance vs. Drain Current

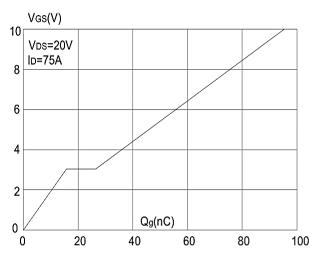


Figure 5: Gate Charge Characteristics

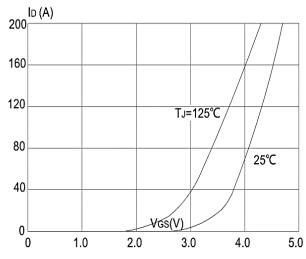


Figure 2: Typical Transfer Characteristics ${}_{{\rm IS}(A)}$

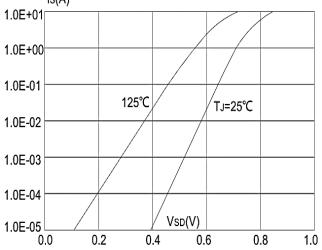
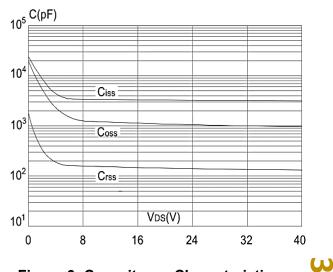
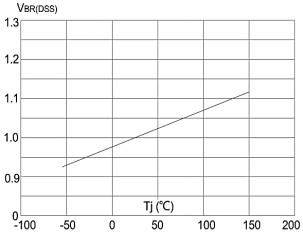
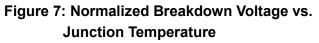
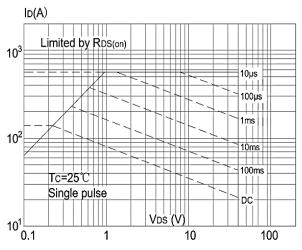



Figure 4: Body Diode Characteristics






东莞市宇芯电子有限公司 DONGGUAN YUSHIN ELECTRONICS CO.,LTD 电话: 0769-89027776/81885205/81885153

<u>AP150N04Y</u>

Figure 9: Maximum Safe Operating Area

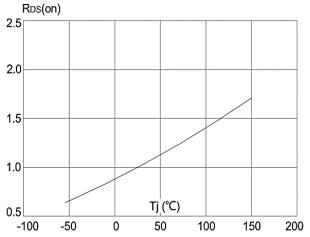


Figure 8: Normalized on Resistance vs Junction Temperature

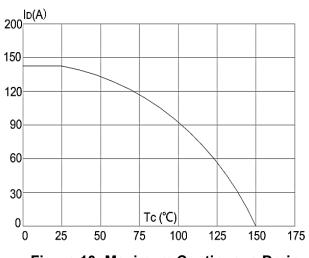
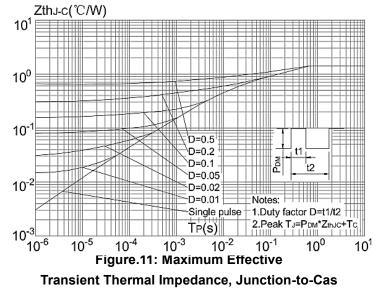
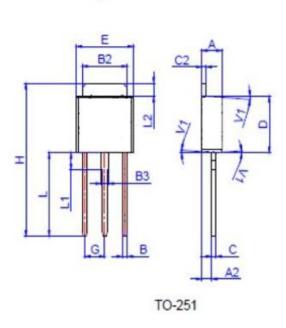



Figure 10: Maximum Continuous Drain Currentvs. Case Temperature


40V N-Channel Enhancement Mode MOSFET

Package Mechanical Data-TO-251L-3L

尓

Ъ

4 4 4

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max
A	2.20		2.40	0.086		0.095
A2	0.90		1.20	0.035		0.047
в	0.55		0.65	0.022		0.026
B2	5.10		5.40	0.200		0.213
B3	0.76		0.85	0.030		0.033
С	0.45		0.62	0.018		0.024
C2	0.48		0.62	0.019		0.024
D	6.00		6.20	0.236		0.244
E	6.40		6.70	0.252		0.264
G		2.30			0.091	
н	16.0		17.0	0.630		0.669
L	8.90		9.40	0.350		0.370
L1	1.80		1.90	0.071		0.075
L2	1.37		1.50	0.054		0.059
V1		4°			4°	

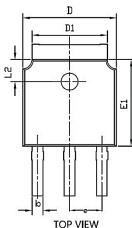
Package Information -TO-251

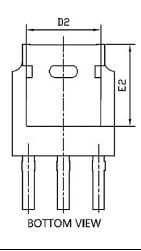
OUTLINE	TUBE	INNER BOX	PER CARTON
	(PCS)	(PCS)	(PCS)
TUBE	80	4,000	32,000

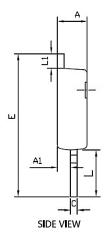
子

心里

DONGGUAN YUSHIN ELECTRONICS


电话:0769-89027776/81885205/81885153




AP150N04Y

40V N-Channel Enhancement Mode MOSFET

Package Mechanical Data-TO-251S-3L

TOP VIEW

	Common			
Symbol	mm			
	Mim	Nom	Max	
А	2.2	2.3	2.4	
A1	0.9	1.0	1.1	
b	0.66	0.76	0.86	
C	0.46	0.52	0.58	
D	6.50	6.6	6.7	
D1	5.15	5.3	5.45	
D2	4.6	4.8	4.95	
E	10.4		11.5	
E1	6.0	6.1	6.2	
E2	5.400REF			
е	2.286BSC			
L	3.5	4.0	4.3	
L1	0.9		1.27	
L2	1.4		1.9	