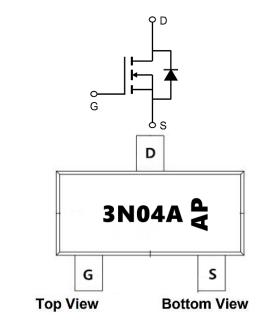
40V N-Channel Enhancement Mode MOSFET

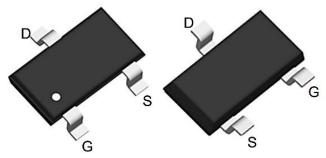
Description

The AP3N04AI uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 40V I_{D} = 3A$


 $R_{DS(ON)} < 40 \text{m}\Omega$ @ $V_{GS}=10 \text{V}$ (Type: $28 \text{m}\Omega$)


Application

Wireless charging

Boost driver

LED

Package Marking and Ordering Information

r donage marking t	actuage marking and cracing membration				
Product ID	Pack	Marking	Qty(PCS)		
AP3N04AI	SOT23L	3N04A-AP	3000		

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Symbol	Parameter	Rating	Units
V _D s	Drain-Source Voltage	40	V
Vgs	Gate-Source Voltage	±20	V
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	3	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	2.9	А
Ідм	Pulsed Drain Current ²	15	А
EAS	Single Pulse Avalanche Energy³	16.2	mJ
P _D @T _A =25°C	Total Power Dissipation ⁴	1.67	W
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
Reja	Thermal Resistance Junction-Ambient ¹	125	°C/W
Rejc	Thermal Resistance Junction-Case ¹	30	°C/W

40V N-Channel Enhancement Mode MOSFET

N-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	40	44		V
∆BVDSS/∆TJ	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.032		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =4A		28	40	mΩ
		V _{GS} =4.5V , I _D =3A		35	50	
VGS(th)	Gate Threshold Voltage)/	1.0	1.5	2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-4.5		mV/°C
1000	Drain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =25°C			1	uA
IDSS		V _{DS} =32V , V _{GS} =0V , T _J =55°C			5	
IGSS	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =4A		8		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.4	4.8	Ω
Qg	Total Gate Charge (4.5V)			5		nC
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =3A		1.54		
Qgd	Gate-Drain Charge			1.84		
Td(on)	Turn-On Delay Time			7.8		
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V ,		2.1		
Td(off)	Turn-Off Delay Time	$R_G=3.3\Omega$ $I_D=1A$		29		ns
Tf	Fall Time			2.1		
Ciss	Input Capacitance			452		
Coss	Output Capacitance	V_{DS} =15V , V_{GS} =0V , f=1MHz		51		pF
Crss	Reverse Transfer Capacitance			38		
IS	Continuous Source Current ^{1,4}	\/ -\/ -0\/ F 0: '			4.5	Α
ISM	Pulsed Source Current ^{2,4}	V _G =V _D =0V , Force Current			14	Α
VSD	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25℃			1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2_{\times} The data tested by pulsed , pulse width $\leqq 300 us$, duty cycle $\leqq 2\%$
- 3. The power dissipation is limited by 150°C junction temperature
- 4. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

40V N-Channel Enhancement Mode MOSFET

N-Typical Characteristics

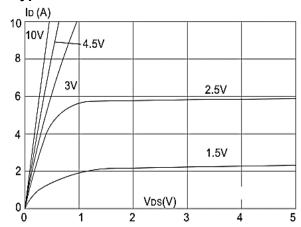
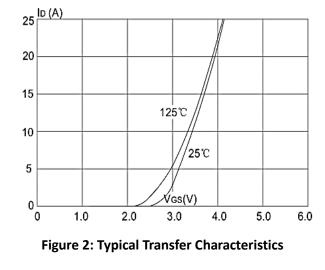
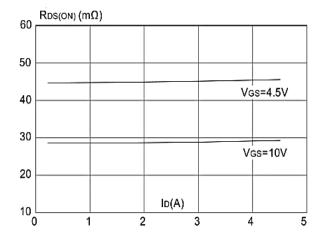
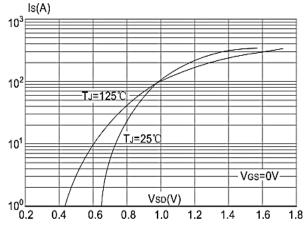
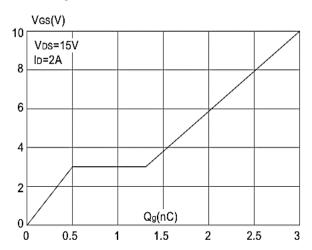



Figure1: Output Characteristics

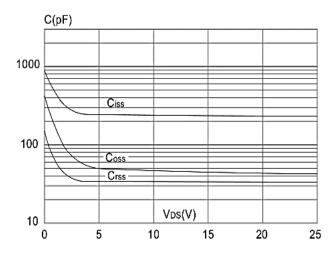

Figure 3:On-resistance vs. Drain Current

Figure 4: Body Diode Characteristics

Figure 5: Gate Charge Characteristics

Figure 6: Capacitance Characteristics

40V N-Channel Enhancement Mode MOSFET

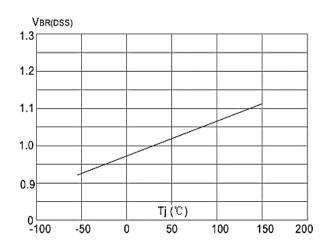


Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

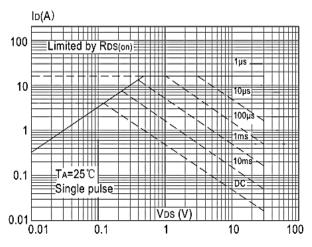


Figure 9: Maximum Safe Operating Area vs. Case Temperature

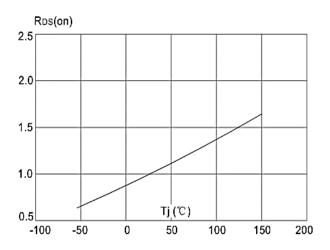
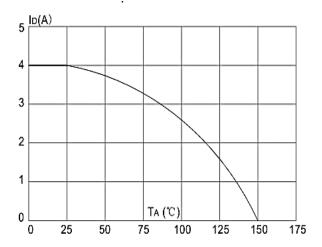
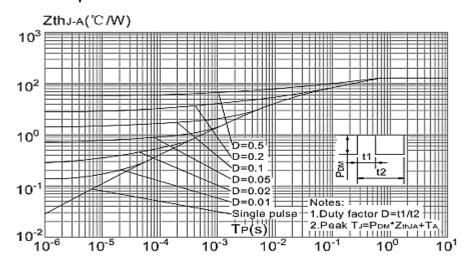
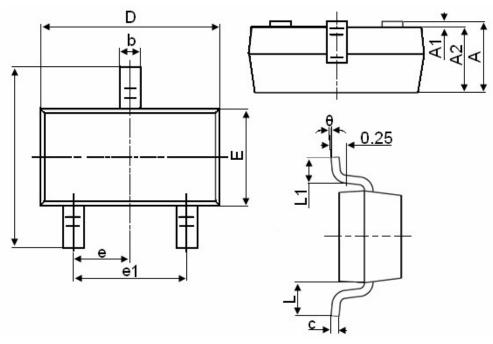



Figure 8: Normalized on Resistance vs Junction Temperature

Figure 10: Maximum Continuous Drain Current




Figure.11: Maximum Effective
Transient Thermal Impedance, Junction-to-Case

40V N-Channel Enhancement Mode MOSFET

Package Mechanical Data-SOT23-XC-Single

Cb ol	Dimensions in Millimeters			
Symbol	MIN.	MAX.		
А	0.900	1.150		
A1	0.000	0.100		
A2	0.900	1.050		
b	0.300	0.500		
С	0.080	0.150		
D	2.800	3.000		
Е	1.200	1.400		
E1	2.250	2.550		
е	0.950TYP			
e1	1.800	2.000		
L	0.550REF			
L1	0.300	0.500		
θ	0°	8°		