

## **30V N-Channel Enhancement Mode MOSFET**

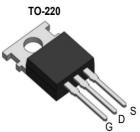
#### **Description**

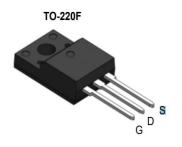
The AP60N03F/T/P uses advanced trench technology to provide excellent  $R_{DS(ON)}$ , low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

#### **General Features**

V<sub>DS</sub> = 30V I<sub>D</sub> =60A

 $R_{DS(ON)} < 8.5 \text{m}\Omega$  @  $V_{GS}=10V$  (Type:  $6.0 \text{m}\Omega$ )


# AP60N03F/T/P XXX YYYY


#### **Application**

**BLDC** 

Wireless impact

Mobile phone fast charging







Package Marking and Ordering Information

| 0          | •         |                   |          |
|------------|-----------|-------------------|----------|
| Product ID | Pack      | Marking           | Qty(PCS) |
| AP60N03F   | TO-220-3L | AP60N03F XXX YYYY | 1000     |
| AP60N03T   | TO-263-3L | AP60N03T XXX YYYY | 800      |
| AP60N03P   | TO-220-3L | AP60N03P XXX YYYY | 1000     |

### Absolute Maximum Ratings (T<sub>C</sub>=25°Cunless otherwise noted)

| Symbol                                | Parameter                                                    | Rating     | Units |
|---------------------------------------|--------------------------------------------------------------|------------|-------|
| VDS                                   | Drain-Source Voltage                                         | 30         | V     |
| VGS                                   | Gate-Source Voltage                                          | ±20        | V     |
| I <sub>D</sub> @T <sub>C</sub> =25°C  | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 60         | А     |
| I <sub>D</sub> @T <sub>C</sub> =100°C | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1</sup> | 40         | А     |
| IDM                                   | Pulsed Drain Current <sup>2</sup>                            | 92         | А     |
| EAS                                   | Single Pulse Avalanche Energy <sup>3</sup>                   | 57.8       | mJ    |
| IAS                                   | Avalanche Current                                            | 34         | Α     |
| P <sub>D</sub> @T <sub>C</sub> =25°C  | Total Power Dissipation <sup>4</sup>                         | 29         | W     |
| TSTG                                  | Storage Temperature Range                                    | -55 to 150 | °C    |
| TJ                                    | Operating Junction Temperature Range                         | -55 to 150 | °C    |
| R <sub>θ</sub> JA                     | Thermal Resistance Junction-ambient <sup>1</sup>             | 62         | °C/W  |
| R₀JC                                  | Thermal Resistance Junction-Case <sup>1</sup>                | 4.32       | °C/W  |





## **30V N-Channel Enhancement Mode MOSFET**

## Electrical Characteristics (T<sub>C</sub>=25 ℃ unless otherwise noted)

| Symbol         | Parameter                                      | Conditions                                                         | Min. | Тур. | Max. | Unit  |
|----------------|------------------------------------------------|--------------------------------------------------------------------|------|------|------|-------|
| BVDSS          | Drain-Source Breakdown Voltage                 | $V_{GS}$ =0 $V$ , $I_D$ =250 $u$ A                                 | 30   | 33   |      | V     |
| RDS(ON)        | Static Drain-Source On-Resistance <sup>2</sup> | V <sub>GS</sub> =10V , I <sub>D</sub> =12A                         |      | 6.0  | 8.5  | mΩ    |
| ND3(ON)        | Static Drain-Source On-INESIStatice            | V <sub>GS</sub> =4.5V , I <sub>D</sub> =10A                        |      | 8.0  | 13   | 11152 |
| VGS(th)        | Gate Threshold Voltage                         | V <sub>GS</sub> =V <sub>DS</sub> , I <sub>D</sub> =250uA           | 1.0  | 1.6  | 2.5  | V     |
| △VGS(th)       | V <sub>GS(th)</sub> Temperature Coefficient    | VGS-VDS, ID -250UA                                                 |      | -5.8 |      | mV/°C |
| IDSS           | Drain-Source Leakage Current                   | V <sub>DS</sub> =24V , V <sub>GS</sub> =0V , T <sub>J</sub> =25°C  | I    |      | 1    | uA    |
| 1033           |                                                | V <sub>DS</sub> =24V , V <sub>GS</sub> =0V , T <sub>J</sub> =55°C  | -    |      | 5    |       |
| IGSS           | Gate-Source Leakage Current                    | $V_{GS}$ =±20 $V$ , $V_{DS}$ =0 $V$                                | I    |      | ±100 | nA    |
| gfs            | Forward Transconductance                       | V <sub>DS</sub> =5V , I <sub>D</sub> =15A                          |      | 9.8  |      | S     |
| Rg             | Gate Resistance                                | V <sub>DS</sub> =0V , V <sub>GS</sub> =0V , f=1MHz                 |      | 1.7  |      | Ω     |
| Qg             | Total Gate Charge (4.5V)                       | V <sub>DS</sub> =20V , V <sub>GS</sub> =4.5V , I <sub>D</sub> =12A |      | 12.8 |      |       |
| Qgs            | Gate-Source Charge                             |                                                                    |      | 3.3  |      | nC    |
| Qgd            | Gate-Drain Charge                              |                                                                    |      | 6.5  |      |       |
| Td(on)         | Turn-On Delay Time                             |                                                                    |      | 4.5  |      |       |
| Tr             | Rise Time                                      | $V_{DD}=12V$ , $V_{GS}=10V$ ,                                      |      | 10.8 |      | no    |
| Td(off)        | Turn-Off Delay Time                            | $R_G$ =3.3Ω $I_D$ =5Α                                              |      | 25.5 |      | ns    |
| T <sub>f</sub> | Fall Time                                      |                                                                    |      | 9.6  |      |       |
| Ciss           | Input Capacitance                              |                                                                    |      | 1317 |      |       |
| Coss           | Output Capacitance                             | $V_{DS}$ =15V , $V_{GS}$ =0V , f=1MHz                              |      | 163  |      | pF    |
| Crss           | Reverse Transfer Capacitance                   |                                                                    |      | 131  |      |       |
| IS             | Continuous Source Current <sup>1,6</sup>       | \/-=\/-=0\/                                                        |      |      | 46   | Α     |
| ISM            | Pulsed Source Current <sup>2,6</sup>           | V <sub>G</sub> =V <sub>D</sub> =0V , Force Current                 |      |      | 92   | Α     |
| VSD            | Diode Forward Voltage <sup>2</sup>             | V <sub>GS</sub> =0V , I <sub>S</sub> =1A , T <sub>J</sub> =25°C    |      |      | 1    | V     |

#### Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- $2_{\times}$  The data tested by pulsed , pulse width  $\leqq 300 us$  , duty cycle  $\leqq 2\%$
- $3 \times$  The EAS data shows Max. rating . The test condition is VDD=25V,VGS=10V,L=0.1mH,IAS=34A
- $4\$  The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

## **30V N-Channel Enhancement Mode MOSFET**

## **Typical Characteristics**

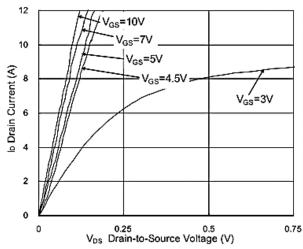
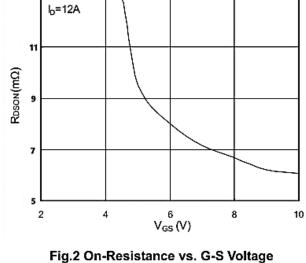




Fig.1 Typical Output Characteristics



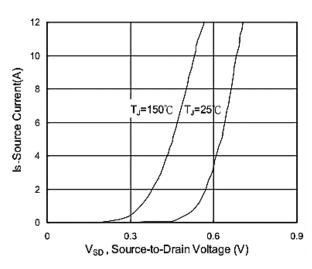



Fig.3 Forward Characteristics of Reverse

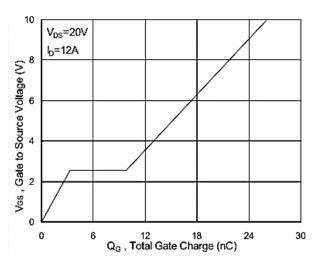



Fig.4 Gate-Charge Characteristics

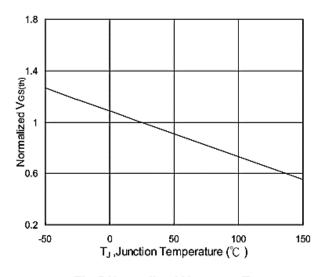



Fig.5 Normalized V<sub>GS(th)</sub> vs. T<sub>J</sub>

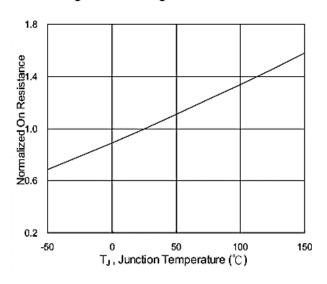
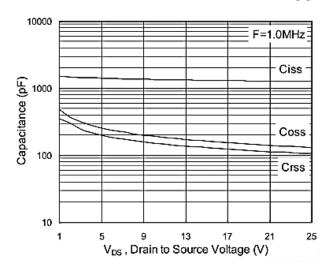




Fig.6 Normalized RDSON vs. TJ

## **30V N-Channel Enhancement Mode MOSFET**



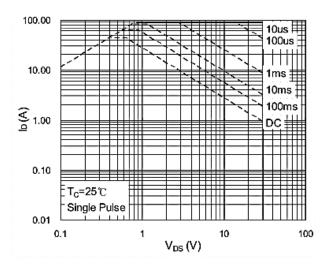



Fig.7 Capacitance

Fig.8 Safe Operating Area

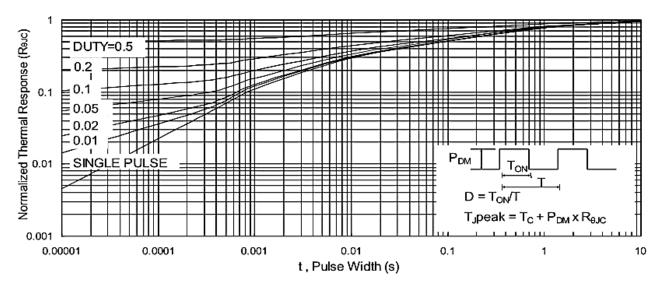



Fig.9 Normalized Maximum Transient Thermal Impedance

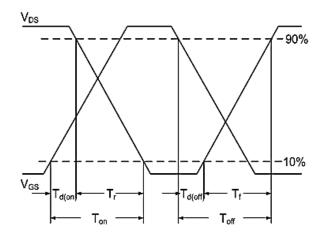
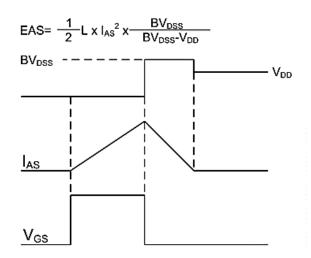
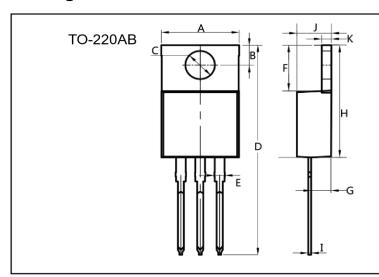
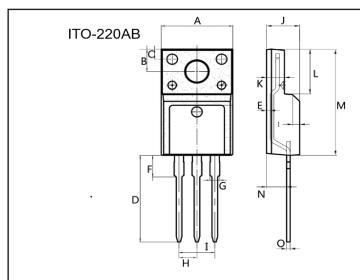
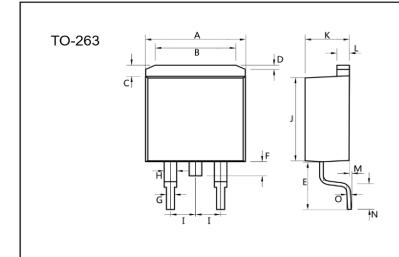



Fig.10 Switching Time Waveform



Fig.11 Unclamped Inductive Switching Waveform

## **30V N-Channel Enhancement Mode MOSFET**


# Package Mechanical Data-PDFN5\*6-8L-JQ Single



| Dim.                         | Min. | Max. |
|------------------------------|------|------|
| Α                            | 10.0 | 10.4 |
| В                            | 2.5  | 3.0  |
| С                            | 3.5  | 4.0  |
| D                            | 28.0 | 30.0 |
| Е                            | 1.1  | 1.5  |
| F                            | 6.2  | 6.6  |
| G                            | 2.9  | 3.3  |
| Н                            | 15.0 | 16.0 |
| 1                            | 0.35 | 0.45 |
| J                            | 4.3  | 4.7  |
| K                            | 1.2  | 1.4  |
| All Dimensions in millimeter |      |      |



| Dim.                         | Min.     | Max.  |  |
|------------------------------|----------|-------|--|
| Α                            | 9.9      | 10.3  |  |
| В                            | 2.9      | 3.5   |  |
| С                            | 1.15     | 1.45  |  |
| D                            | 12.75    | 13.25 |  |
| E                            | 0.55     | 0.75  |  |
| F                            | 3.1      | 3.5   |  |
| G                            | 1.25     | 1.45  |  |
| Н                            | Typ 2.54 |       |  |
| I                            | Typ 5.08 |       |  |
| J                            | 4.55     | 4.75  |  |
| K                            | 2.4      | 2. 7  |  |
| L                            | 6.35     | 6.75  |  |
| М                            | 15.0     | 16.0  |  |
| N                            | 2.75     | 3.15  |  |
| 0                            | 0.45     | 0.60  |  |
| All Dimensions in millimeter |          |       |  |



| Dim.                         | Min. Max. |       |  |  |
|------------------------------|-----------|-------|--|--|
| Α                            | 10.0      | 10. 5 |  |  |
| В                            | 7.25      | 7.75  |  |  |
| С                            | 1.3       | 1.5   |  |  |
| D                            | 0.55      | 0.75  |  |  |
| E                            | 5.0       | 6.0   |  |  |
| F                            | 1.4       | 1.6   |  |  |
| G                            | 0.75      | 0.95  |  |  |
| Н                            | 1.15      | 1.35  |  |  |
| I                            | Typ 2.54  |       |  |  |
| J                            | 8.4       | 8.6   |  |  |
| K                            | 4.4       | 4.6   |  |  |
| L                            | 1.25      | 1.45  |  |  |
| М                            | 0.02      | 0.1   |  |  |
| N                            | 2.4       | 2.8   |  |  |
| 0                            | 0.35      | 0.45  |  |  |
| All Dimensions in millimeter |           |       |  |  |
|                              |           |       |  |  |