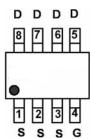


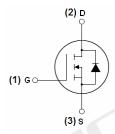
N-Channel 60V (D-S) MOSFET

Description

The FIR16N06DG uses Super Trench technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS}(\text{ON})}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features


- V_{DS} =60V,I D =16A
 - $$\begin{split} R_{DS(ON)} = &13m\Omega \text{ (max) @ V }_{GS} = &10V \\ R_{DS(ON)} = &16m\Omega \text{ (max) @ V }_{GS} = &4.5V \end{split}$$
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested


Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

PIN CONFIGURATION

(SOP-8)

N-Channel MOSFET

SOP-8 top view

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

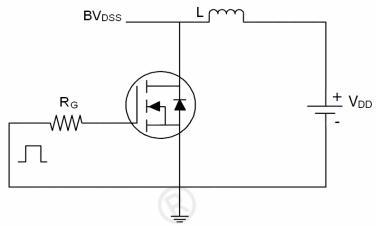
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	16	Α	
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	10.2	А	
Pulsed Drain Current	I _{DM}	64	А	
Maximum Power Dissipation	P _D	3.1	W	
Derating factor		0.028	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	211	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	℃	

Thermal Characteristic

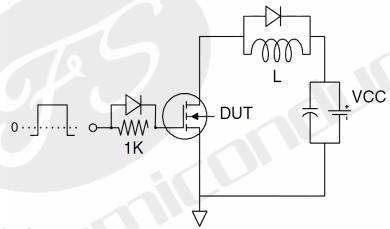
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	40	°C/W	
--	-----------------	----	------	--

Electrical Characteristics (T_A=25°C unless otherwise noted)

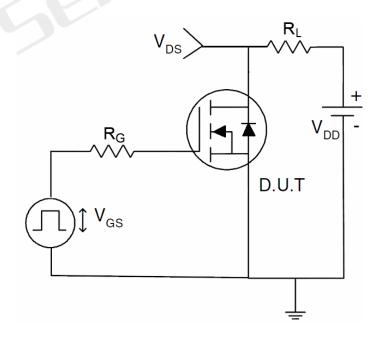
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics				•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)				•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1	2	3	V
Dunin Course On State Besistance	Б	V _{GS} =10V, I _D =8A	-	10	13	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =8A	-	14	16	mΩ
Forward Transconductance	g _{FS}	V _{DS} =10V,I _D =14A	45	-	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	-	4300		PF
Output Capacitance	Coss	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	290	1	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0IVIHZ	-	26	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}			25	-	nS
Turn-on Rise Time	t _r	V_{DD} =50 V , I_D =14 A	-	95	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =1.6 Ω	-	154	-	nS
Turn-Off Fall Time	t _f		-	77	-	nS
Total Gate Charge	Qg	V 50VI 44A	-	88	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =50V, I_{D} =14A, V_{GS} =10V	-	17	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	15	-	nC
Drain-Source Diode Characteristics				•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =14A	-	-	1.5	V
Diode Forward Current (Note 2)	Is		-	-	16	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	73	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	15	-	nC


Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}\,\text{,V}_\text{DD}\text{=}50\text{V}\text{,V}_\text{G}\text{=}10\text{V}\text{,L=}0.5\text{mH}\text{,Rg=}25\Omega$



Test Circuit


1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

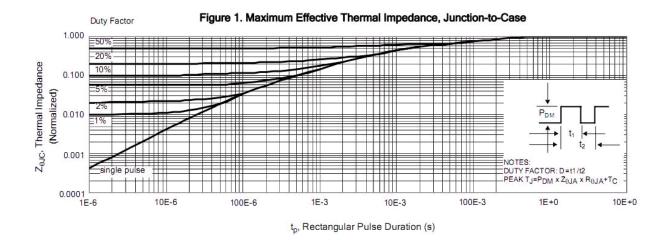


Figure 2. Maximum Power Dissipation

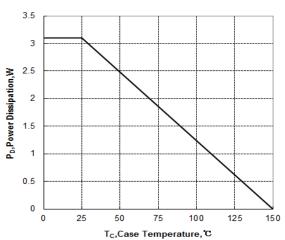


Figure 4. Typical Output Characteristics

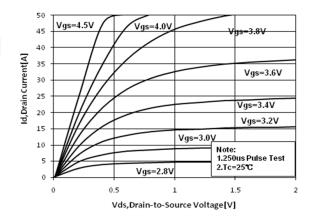


Figure 3. Maximum Continuous Drain Current

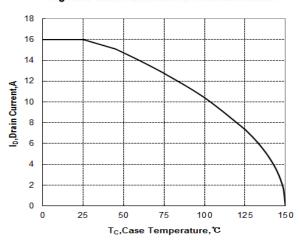


Figure 5. Typical Drain-to-Source ON Resistance vs Gate Voltage and Drain Current

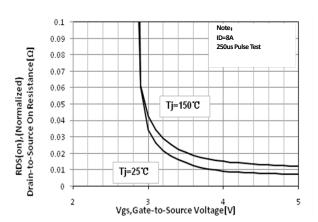


Figure 6. Typical Transfer Characteristics

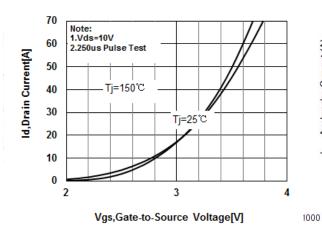


Figure 8. Typical Drain-to-Source ON Resistance vs Drain Current

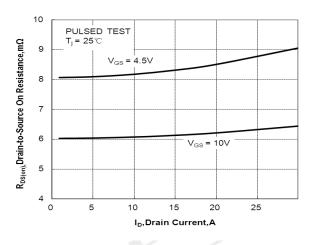


Figure 10. Typical Breakdown Voltage vs Junction Temperature

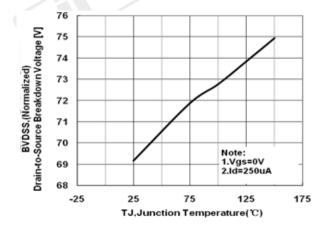
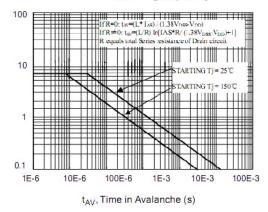



Figure 8. Unclamped Inductive Switching Capability

I_{AS}, Avalanche Current (A)

Figure 9. Drain-to-Source ON Resistance vs Junction Temperature

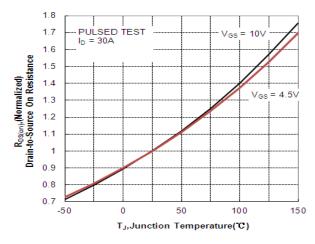


Figure 11. Typical Threshold Voltage vs Junction Temperature

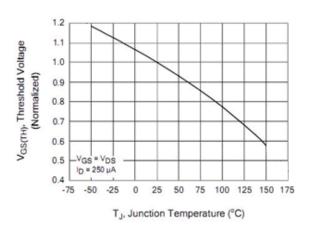


Figure 12.Maximum Forward Bias Safe Operating Area

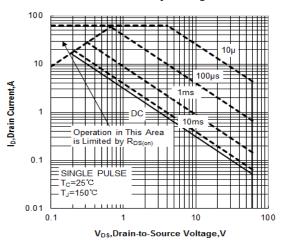
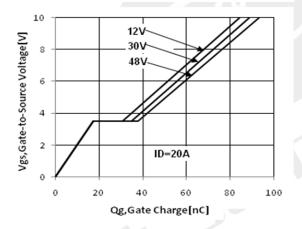
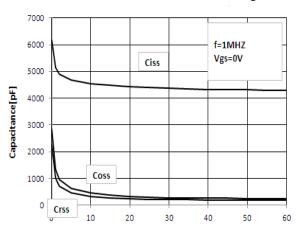
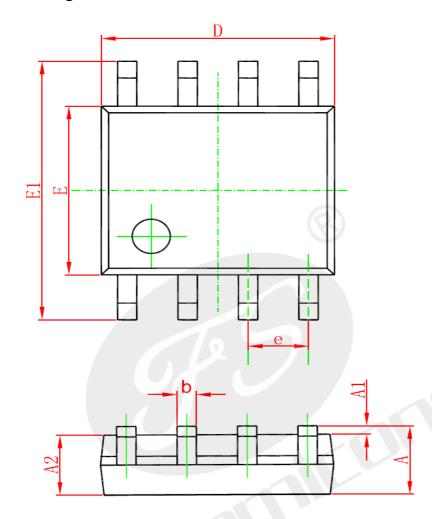
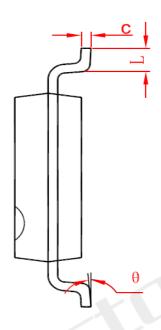


Figure 14. Typical Gate Charge vs Gate-to-Source Voltage


Figure 13. Typical Capacitance vs Drain-to-Source Voltage



Vds,Drain to Source Voltage[V]

SOP-8 Package Information

Dimensions In Millimeters Dimensions In Inches				
Symbol	Min	Max	Min	Max
Symbol	Dimensions In Millimeters		Dimensions In Inches	
Syllibol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0. 069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0. 061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
Е	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0.050	(BSC)
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°

Declaration

- FIRST reserves the right to change the specifications, the same specifications of products due to different packaging line mold, the size of the appearance will be slightly different, shipped in kind, without notice!
 Customers should obtain the latest version information before ordering, and verify whether the relevant information is complete and up-to-date.
- Any semiconductor product under certain conditions has the possibility of failure or failure, The buyer has the responsibility to comply with safety standards and take safety measures when using FIRST products for system design and manufacturing, To avoid To avoid potential failure risks, which may cause personal injury or property damage!
- Product promotion endless, our company will wholeheartedly provide customers with better products!

ATTACHMENT

Revision History

Date	REV	Description	Page
2021.05.01	1.0	Initial release	