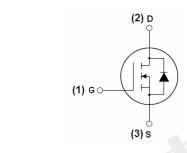


N-Channel Enhancement Mode Power Mosfet-D

Description

The FIR80N08PG uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

General Features


- V_{DS} =80V,I_D =80A
 - $R_{DS(ON)} < 10 \text{m}\Omega$ @ $V_{GS} = 10 \text{V}$ (Typ:8.4m Ω)
- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current
- Special designed for Convertors and power controls
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard Switched and High Frequency Circuits
- Uninterruptible Power Supply

PIN Connection TO-220

Marking Diagram

Y = Year

A = Assembly Location
WW = Work Week

VT = Version & Thickness

FIR80N08P = Specific Device Code

Package Marking And Ordering Information

	0				
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
FIR80N08P	FIR80N08PG	TO-220	-	-	-

Absolute Maximum Ratings (TA=25℃unless otherwise noted)

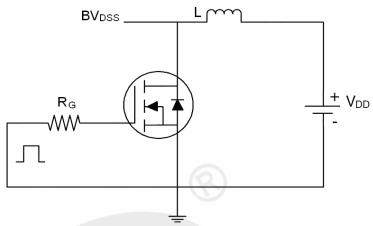
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	80	V
Gate-Source Voltage	V _{GS}	±20	V
Drain Current-Continuous	I _D	80	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	60	А
Pulsed Drain Current	I _{DM}	320	А
Maximum Power Dissipation	P _D	160	W
Peak diode recovery voltage	dv/dt	15	V/ns
Derating factor		1.28	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	600	mJ
Operating Junction and Storage Temperature Range	T_J,T_STG	-55 To 150	$^{\circ}$

Thermal Characteristic

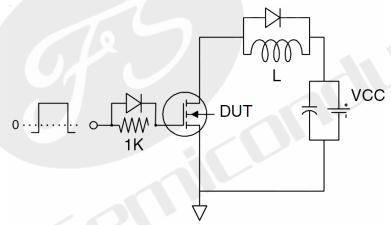
Thermal Resistance, Junction-to-Case(Note 2)	$R_{ heta JC}$	0.78	°C/W
--	----------------	------	------

Electrical Characteristics (TA=25°C unless otherwise noted)

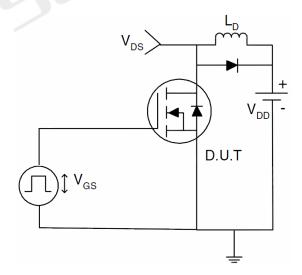
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	80	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =80V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	8.4	10	mΩ
Forward Transconductance	g Fs	V _{DS} =25V,I _D =40A	100	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,	-	3400	-	PF
Output Capacitance	Coss		-	290		PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	30		PF
Switching Characteristics (Note 4)	70					
Turn-on Delay Time	t _{d(on)}		4-	18	-	nS
Turn-on Rise Time	t _r	VDD=30V,ID=2A,RL=15Ω	à -\ \	12	-	nS
Turn-Off Delay Time	t _{d(off)}	,RG=2.5Ω,VGS=10V	-	56	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	V -20VI -20A	-	100	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=30A,$ $V_{GS}=10V$	-	20	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	30	-	nC
Drain-Source Diode Characteristics						•
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	80	Α
Reverse Recovery Time	t _{rr}	Tj=25℃,I _F =80A,di/dt=100A/μs	-		36	nS
Reverse Recovery Charge	verse Recovery Charge Qrr (Note3)		-		56	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				LS+LD)


Notes:

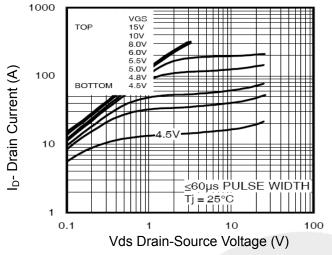
- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=40V,V_G=10V,L=0.5mH,Rg=25 Ω



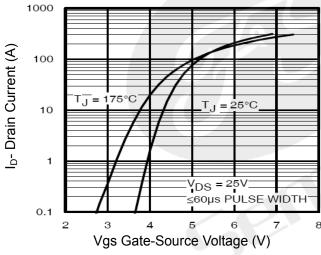
Test circuit


1) E_{AS} test Circuits

2) Gate charge test Circuit:



3) Switch Time Test Circuit:



Typical Electrical And Thermal Characteristics(Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

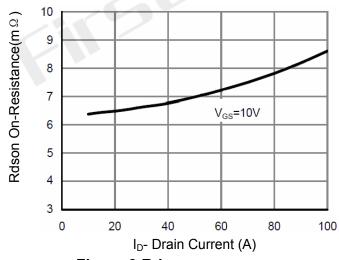


Figure 3 Rdson- Drain Current

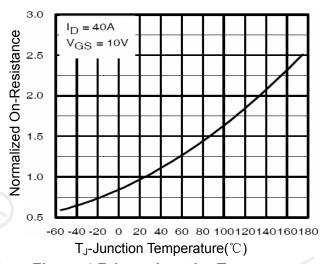


Figure 4 Rdson-JunctionTemperature

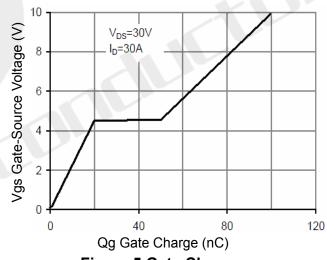


Figure 5 Gate Charge

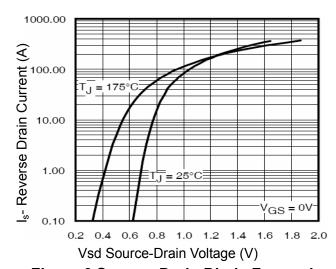


Figure 6 Source- Drain Diode Forward

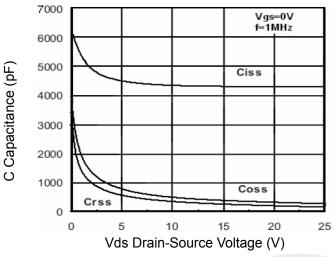


Figure 7 Capacitance vs Vds

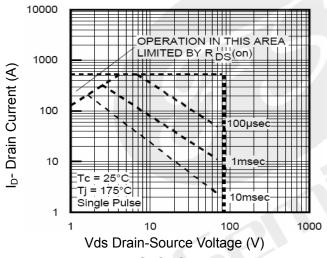


Figure 8 Safe Operation Area

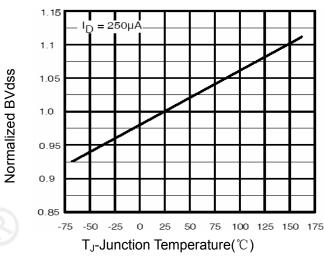


Figure 9 BV_{DSS} vs Junction Temperature

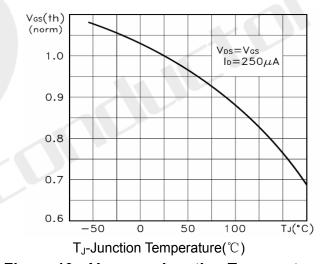
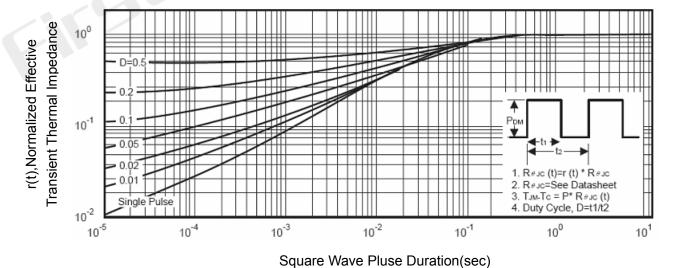
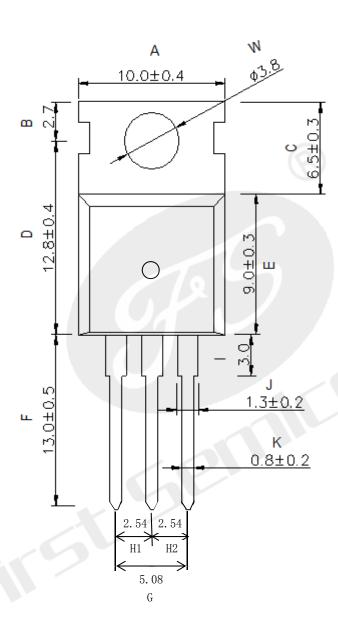
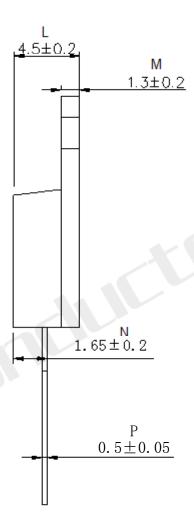



Figure 10 V_{GS(th)} vs Junction Temperatur


Figure 11 Normalized Maximum Transient Thermal Impedance



Package Dimensions

TO-220

Declaration

- FIRST reserves the right to change the specifications, the same specifications of products due to different
 packaging line mold, the size of the appearance will be slightly different, shipped in kind, without notice!
 Customers should obtain the latest version information before ordering, and verify whether the relevant
 information is complete and up-to-date.
- Any semiconductor product under certain conditions has the possibility of failure or failure, The buyer has the responsibility to comply with safety standards and take safety measures when using FIRST products for system design and manufacturing, To avoid To avoid potential failure risks, which may cause personal injury or property damage!
- Product promotion endless, our company will wholeheartedly provide customers with better products!

ATTACHMENT

Revision History

Date	REV		
2018.01.01	1.0	Initial release	