

PIN Connection TO-220F

Features

- 18A, 650V, RDS(on) = 380mΩ @VGS = 10 V
- Low gate charge (typical 38nC)
- Low Crss (typical 6.2pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Schematic diagram

Marking Diagram

·		
_	Y	= Year
AWWVT	А	= Assembly Location
N65F	WW	= Work Week
	VT	= Version & Thickness
<u> </u>	FIR18N65F	= Specific Device Code

(*FS*)" FIR18

General Description

This Power MOSFET is produced by HSDQ using its own advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Symbol	Parameter	Value	Units		
Vdss	Drain-Source Voltage	V			
۱ _D	Drain Current - Continuous (TC= 25°C) - Continuous (TC= 100°C)	18	А		
		11.7*	А		
I _{DM}	Drain Current - Pulsed (Note 1)	А			
V _{GSS}	Gate-Source Voltage	± 30	V		
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	340	mJ		
I _{AR}	Avalanche Current (Note 1)	18	А		
E _{AR}	Repetitive Avalanche Energy (Note 1)	48	mJ		
dv/dt	Peak Diode Recovery dv/dt (Note 3)	5	V/ns		
P _D	Power Dissipation (TC = 25°C) - Derate above 25°C	35.0	W		
		0.28	W/°C		
T _i ,T _{stq}	Operating and Storage Temperature Range	-55 to +150	٥C		
TL	Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds	300	℃		

* Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Parameter	Value	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case	3.55	°C/W
$R_{ extsf{ heta}JS}$	Thermal Resistance, Case-to-Sink Typ.		°C/W
R _{eja}	Thermal Resistance, Junction-to-Ambient	43.2	°C/W

Electrical Characteristics TC = 25°C unless otherwise noted						
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$	650			V
ΔΒV _{DSS} / ΔΤ _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenc ed to $25^{\circ}C$		0.61		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 670 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			1	μA
		V _{DS} = 400 V, TC = 125° C			10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
On Chara	cteristics					
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, I_D =250 uA	3.0		5.0	V
R _{DS(On)}	Drain-Source On-state Resistance	V_{GS} =10 V, I _D =9 A, T _J = 25°C		380	480	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = 40 V, I_D = 9 A$ (Note 4)		17		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			2150		pF
C _{oss}	Output Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$ f = 1.0 MHz		265		pF
C _{rss}	Reverse Transfer Capacitance			6.2		pF
Switching	g Characteristics					
t _{d(on)}	Turn On Delay Time			36		ns
t _r	Rising Time	$V_{DD} = 335 \text{ V}, \text{ ID} = 18 \text{ A},$		51		ns
t _{d(off)}	Turn Off Delay Time	(Note 4, 5)		80		ns
t _f	Fall Time			44		ns
Qg	Total Gate Charge	V = 225 V ID = 18 A		38		nC
Q_{gs}	Gate-Source Charge	$v_{DS} = 335 \text{ V}, \text{ ID} = 18 \text{ A},$ $V_{GS} = 10 \text{ V}$		12		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		13		nC
Drain-So	urce Diode Characteristics and	Maximum Ratings				
I _S	Maximum Continuous Drain-Source Diode Forward Current				18	А
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				72	А
V_{SD}	Diode Forward Voltage	V _{GS} = 0 V, I _S = 18 A			1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_S = 18 A,$ $dI_r / dt = 100 A/us$		456		ns
Q _{rr}	Reverse Recovery Charge	Note 4)		5.9		μC

Notes:

1. Repetitive Rating : Pulse width limited by maximum junction temperature

- 2. L =2.1 mH, IAS = 18A, VDD = 50V, RG = 25Ω, Starting TJ = 25°C
- 3. ISD \leq 20A, di/dt \leq 200A/us, VDD \leq BVDSS, Starting TJ = 25°C 4. Pulse Test : Pulse width \leq 300us, Duty cycle \leq 2%

5. Essentially independent of operating temperature

Typical Characteristics

100

10

1

0.1

2

3

Δ

(D,Drain Current (A)

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

5

6

V_{GS},Gate-to-Source Voltage (V)

-55℃

150℃

7

VDS=40V

. Тс=25 ℃

8

250µs Pulse Test

9

10

Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

Typical Characteristics (Continued)

Figure 9. Maximum Safe Operating Area

Figure 11. Transient Thermal Response Curve

Figure 8. On-Resistance Variation vs Temperature

Figure 10. Maximum Drain Current vs Case Temperature

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Package Information

Declaration

- FIRST reserves the right to change the specifications, the same specifications of products due to different packaging line mold, the size of the appearance will be slightly different, shipped in kind, without notice! Customers should obtain the latest version information before ordering, and verify whether the relevant information is complete and up-to-date.
- Any semiconductor product under certain conditions has the possibility of failure or failure, The buyer has the responsibility to comply with safety standards and take safety measures when using FIRST products for system design and manufacturing, To avoid To avoid potential failure risks, which may cause personal injury or property damage!
- Product promotion endless, our company will wholeheartedly provide customers with better products

ATTACHMENT

Revision History

Date	REV	Description	Page
2019.01.01	1.0	Initial release	