

3W High Power White LED ME2206

General Description:

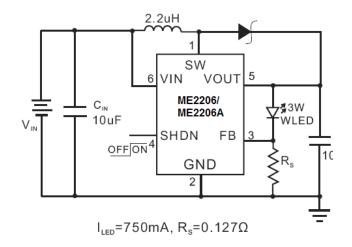
The ME2206 is a set-up DC-DC converter that delivers a regulated output current. The device switches at a 1MHz constant frequency, allowing for the use of small value external inductor and ceramic capacitors.

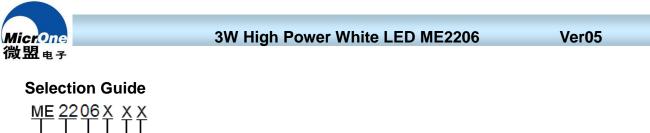
The ME2206 is targeted to be used for driving loads up to 1A from a two-cell alkaline battery. The LED current can be programmed by the external current sense resistor, Rs, connected between the feedback pin (FB) and ground. A low 95mV feedback voltage reduces the power loss in the Rs for better efficiency. During the shutdown mode, the feedback resistor Rs and the load are completely disconnected and the current consumption is reduced to less than 1uA.

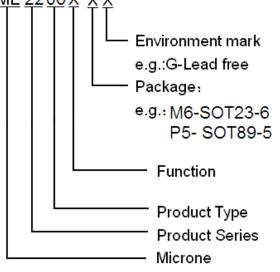
Applications:

- White LED Torch (Flashlight)
- White LED Camera Flash
- DSC(Digital Still Camera)Flash
- Cellular Camera Phone Flash
- PDA Camera Flash
- Camcorder Torch(Flashlight) Lamp

Rs Resistor Value Selection:

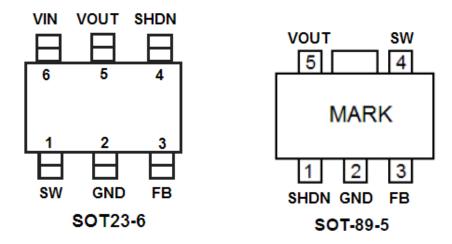

TYP. (mΩ)	I _{LED} (mA)
127	750
270	351.8


CS05FTGR127N (0805, 1%, TCR300,127 mΩ) CS05FTGR270 (0805, 1%, TCR300,270 mΩ)


Features:

- LED Power Efficiency: up to 90%
- Current Accuracy: ±10%
- Low Start-Up Voltage: 0.9V(I_{LED}=270mA)
- Low Hold Voltage:0.75V(I_{LED}=200mA)
- 1MHz Switching Frequency
- Uses small, Low Profile External Components
- Low RDS(ON) : 100mΩ (TYP.)
- Open LED Protection
- Over Temperature Protection
- Packages: SOT-23-6,SOT89-5
- Pb-Free Package

Typical Application:



Precautions:

ME2206 is only applicable to two battery-driven 1W or 3W white LED, ME2206A a battery can drive 1W or 3W white LED.

Pin Configuration& Marking Information:

Pin information:

Pin Number		Name	Function	
SOT23-6	SOT89-5	Maine	ranotion	
1	4	SW	Switch	
2	2	GND	Ground	
3	3	FB	Feedback	
4	1	SHDN	Shut Down	
5	5	V _{OUT}	Output	
6	/	V _{IN}	Input	

Nanjing Micro One Electronics Inc.

Absolute Maximum Ratings:

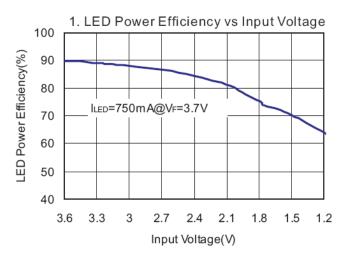
Parameter		Symbol	Ratings	Units
Input Voltage	;	V _{IN}	-0.3V~6V	V
SW Pin Voltag	e	SW	-0.3V~6V	V
SHDN, FB Pin Voltage		SHDN/FB	-0.3V~6V	V
Operating Temperature Range		T _{OPR}	−40°C~85° C	°C
Storage Temperature Range		T _{STG}	−65°C~125° C	°C
Lead Temperature (Soldering, 10 sec)		TL	260 ℃	°C
Internal Power	SOT23-6	PD	400	mW
Dissipation	SOT89-5	PD	500	mW

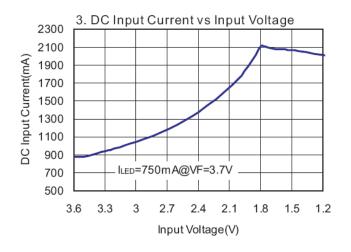
Electrical Characteristic

 $T=\!25^\circ\!\mathbb{C}, \ Vin\!=\!2.4V, \ I_{LED}=\!750mA, \ V_{SHDN}=\!Vin, \ L=\!2.2uH, \ Cin\!=\!Cout\!=\!10uF, \ unless \ otherwise \ noted.$

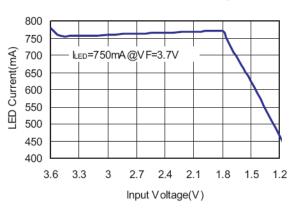
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Voltage Range	Vin		0.9		V _F -0.2	V
Feedback Voltage	V _{FB}		85	95	105	mV
Start-up Voltage	V _{START}	Vin: 0V~3V I _{LED} =270mA		0.9		V
Hold Voltage	V _{HOLD}	Vin: 3V~0V I _{LED} =750mA~200mA		0.75		V
Oscillator Frequency	Fosc			1		MHz
SHDN Input High	V _{SH}	Vin=1.8V	1.0			V
SHDN Input Low	V _{SL}	Vin=1.8V			0.4	V
Over Temperature Shutdown	OTS			150		°C
Over Temperature Hysteresis	OTH			15		°C
Maximum Output Current Range	I _{MAX}		750			mA
Quiescent Current	Ι _Q	I _{LED} =0mA, Vout=3.4V, Device Switch at 1MHz		1	3	mA
Shutdown Current	I _{SD}	Shutdown mode			1	uA
Switch on Resistance	R _{DSON}	Vout=3.4V		0.1		Ω

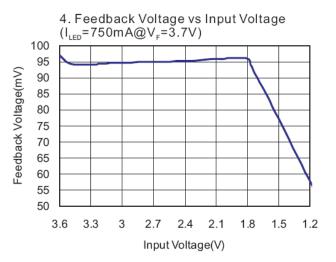
3W High Power White LED ME2206


Ver05

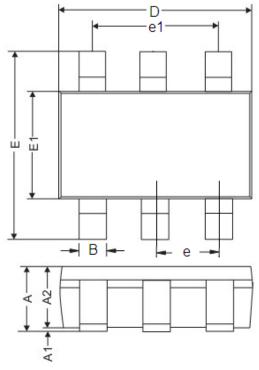

Current Limit	I _{LIM}	Vout=3.4V	2		А
Efficiency	η	I _{LED} =750mA		90	%

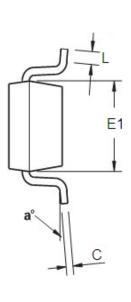
Note1: V_F---LED Forward Voltage


Typical Performance Characteristics


T=25 $^{\circ}$ C, L=2.2uH, Cin=Cout=10uF, unless otherwise noted.

2. LED Current vs Input Voltage

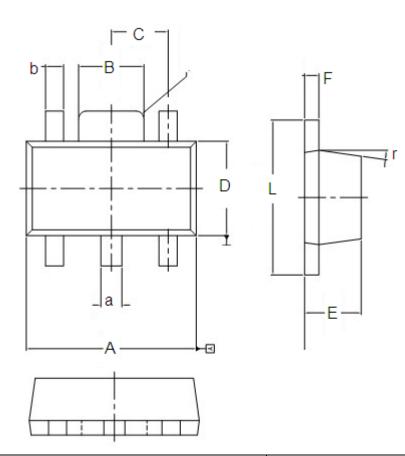




Ver05

Package Information

• SOT23-6 Unit: mm(inch)



DIM	Millimeters		Inches		
DIM	Min	Max	Min	Max	
A	0.9	1.45	0.0354	0.0570	
A1	0	0.15	0	0.0059	
A2	0.9	1.3	0.0354	0.0511	
В	0.2	0.5	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.7	3.10	0.1062	0.1220	
E	2.2	3.2	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95REF		0.0374REF		
e1	1.90REF		0.0748REF		
L	0.10	0.60	0.0039	0.0236	
a ⁰	00	30 ⁰	00	30 ⁰	

Ver05

• SOT89-5

DIM	Millim	neters	Inches		
DIM	Min	Max	Min	Max	
A	4.4	4.6	0.173	0.181	
а	0.5	0.62	0.02	0.024	
В	1.63	1.83	0.064	0.072	
b	0.44	0.54	0.017	0.021	
С	Type:1.5		Туре:0.059		
D	2.4	2.6	0.094	0.102	
E	1.4	1.6	0.054	0.063	
F	0.35	0.43	0.013	0.017	
L	3.95	4.25	0.155	0.167	
r	Type:8 ⁰		Type:8 ⁰		

Ver05

• The information described herein is subject to change without notice.

• Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.

• Use of the information described herein for other purposes and/or reproduction or copying without theexpress permission of Nanjing Micro One Electronics Inc is strictly prohibited.

• The products described herein cannot be used as part of any device or equipment affecting the humanbody, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatusinstalled in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.

• Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.