

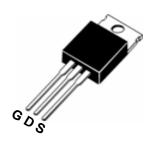
N-Channel Enhancement Mode Power Mosfet

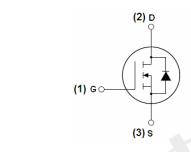
Description

The FIR120N06PG uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

V_{DS} =60V,I_D =120A


 $R_{DS(ON)} < 4.0 m\Omega$ @ $V_{GS} = 10V$ (Typ:3.5 m Ω) $R_{DS(ON)} < 5.0 m\Omega$ @ $V_{GS} = 4.5V$ (Typ:4.0 m Ω)


- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

PIN Connection TO-220AB

Marking Diagram

Y = Year

A = Assembly Location
WW = Work Week

FIR120N06P = Specific Device Code

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
FIR120N06P	FIR120N06PG	TO-220-3L	-	-	-

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

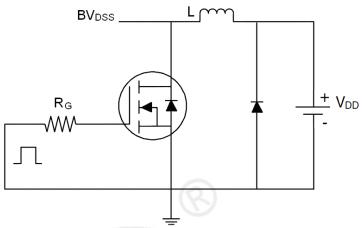
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	60	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous (Silicon Limited)	I _D	120	А
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	100	А
Pulsed Drain Current	I _{DM}	480	А
Maximum Power Dissipation	P _D	180	W
Derating factor		1.2	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	500	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$

Thermal Characteristic

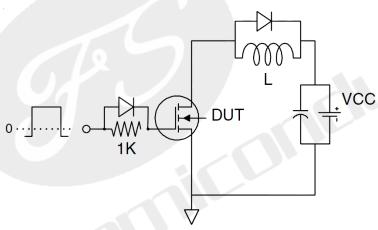
110000010100000000000000000000000000000	Thermal Resistance, Junction-to-Case (Note 2)	$R_{ heta JC}$	0.83	°C/W
---	---	----------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

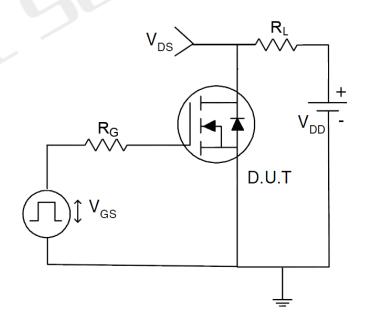
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	<u> </u>					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	60		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =60 V , V_{GS} =0 V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.7	2.4	V
	-	V _{GS} =10V, I _D =60A	-	3.5	4.0	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =60A	-	4.0	5.0	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =60A	40	-	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{Iss}	Clss		4000	46	PF
Output Capacitance	Coss	V _{DS} =30V,V _{GS} =0V,	-	680	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	23	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		(- (11	-	nS
Turn-on Rise Time	t _r	V _{DD} =30V,I _D =60A		5	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =4.7 Ω	-	56	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	V 00VI 00A	-	67		nC
Gate-Source Charge	Q _{gs}	V _{DS} =30V,I _D =60A,	-	12		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	8.5		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =120A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	120	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	48		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	60		nC


Notes:

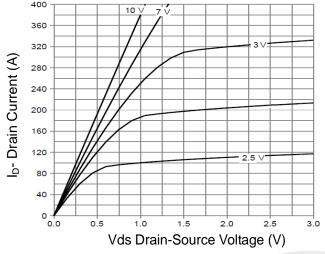
- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}$ C,V_{DD}=30V,V_G=10V,L=0.5mH,Rg=25 Ω



Test Circuit


1) E_{AS} test Circuit

2) Gate charge test Circuit



3) Switch Time Test Circuit

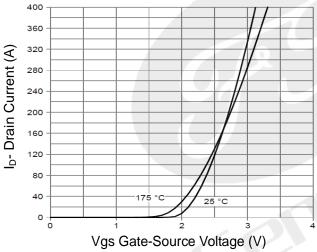


Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

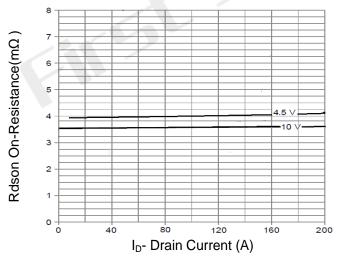


Figure 3 Rdson- Drain Current

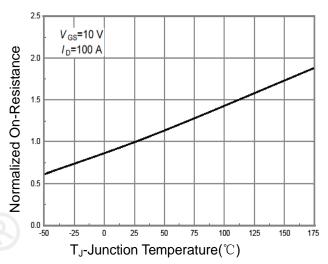


Figure 4 Rdson-JunctionTemperature

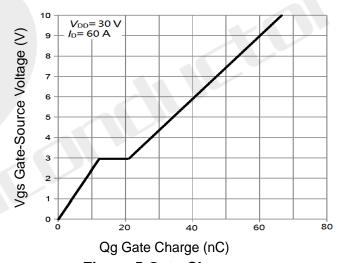


Figure 5 Gate Charge

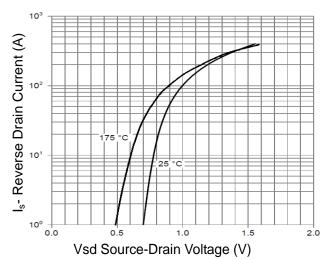
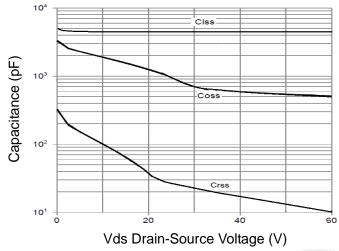
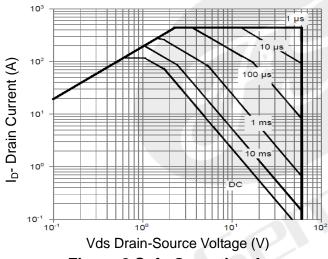



Figure 6 Source- Drain Diode Forward



250
No. ited 150
Solution Temperature (°C)

200
Solution Temperature (°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

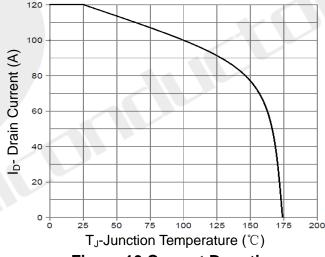
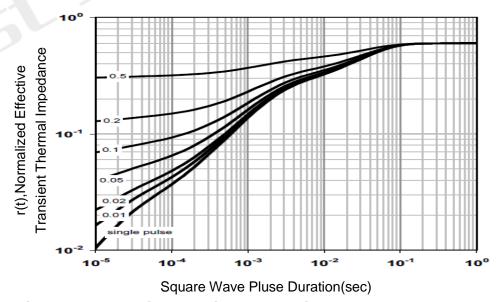



Figure 8 Safe Operation Area

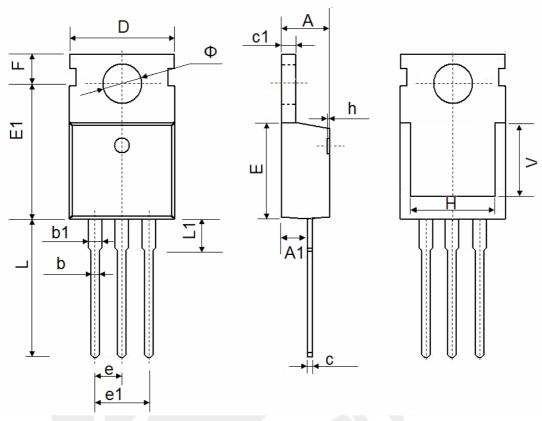

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance

TO-220AB Package Information

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
А	4.400	4.600	0.173	0.181	
A1	2.250	2.550	0.089	0.100	
b	0.710	0.910	0.028	0.036	
b1	1.170	1.370	0.046	0.054	
С	0.330	0.650	0.013	0.026	
c1	1.200	1.400	0.047	0.055	
D	9.910	10.250	0.390	0.404	
E	8.9500	9.750	0.352	0.384	
E1	12.650	12.950	0.498	0.510	
е	2.540 TYP.		0.100	TYP.	
e1	4.980	5.180	0.196	0.204	
F	2.650	2.950	0.104	0.116	
Н	7.900	8.100	0.311	0.319	
h	0.000	0.300	0.000	0.012	
L	12.900	13.400	0.508	0.528	
L1	2.850	3.250	0.112	0.128	
V	7.500	REF.	0.295	REF.	
Ф	3.400	3.800	0.134	0.150	

Declaration

- FIRST reserves the right to change the specifications, the same specifications of products due to different
 packaging line mold, the size of the appearance will be slightly different, shipped in kind, without notice!
 Customers should obtain the latest version information before ordering, and verify whether the relevant
 information is complete and up-to-date.
- Any semiconductor product under certain conditions has the possibility of failure or failure, The buyer has the responsibility to comply with safety standards and take safety measures when using FIRST products for system design and manufacturing, To avoid To avoid potential failure risks, which may cause personal injury or property damage!
- Product promotion endless, our company will wholeheartedly provide customers with better products!

ATTACHMENT

Revision History

Date	REV	Description	Page
2018.01.01	1.0	Initial release	